

Documentation for Django Improved User

Welcome! Below you will find the table of contents for Improved User.

If you’re in a rush, head over to Quickstart: Using Improved User.

If you’re new and want to see what your options are, please read
Select a Configuration Method for Improved User.

Contents:

	Quickstart: Using Improved User
	Installation

	Configuration and Usage

	Quickstart: Contributing

	Project Rationale

	Select a Configuration Method for Improved User
	Extension Method

	Integration Method

	Replacement Method

	Warning about Email Case-Sensitivity

	How To: Integrate Improved User Directly

	How To: Create a Custom User using Mixins

	How To: Use Improved User in Data Migrations

	How To: Use the Django Admin with Improved User

	How to Contribute
	Code of Conduct

	Types of Contributions
	Report Bugs

	Fix Bugs

	Write (or Request) Documentation

	Your First Contribution
	Your First Code Contribution

	Your First Documentation Contribution

	Package Reference
	Overview

	Reference Documents
	Improved User Model

	Managers

	Mix-in Model Classes

	Forms

	Test Factories

	Django Admin Panel

	History
	Next Release

	1.0.1 (2020-02-16)

	1.0.0 (2018-07-28)

	0.5.3 (2017-08-29)

	0.5.2 (2017-08-27)

	0.5.1 (2017-08-27)

	0.5.0 (2017-08-26)

	0.4.0 (2017-08-14)

	0.3.0 (2017-08-10)

	0.2.0 (2017-07-30)

	0.1.1 (2017-06-28)

	0.1.0 (2017-06-28)

	0.0.1 (2016-10-26)

Indices and tables

	Index

	Module Index

	Search Page

Quickstart: Using Improved User

This document provides a quick tutorial for the recommended way to setup
Improved User.

See Select a Configuration Method for Improved User for an overview of options and tradeoffs.

	Installation

	Configuration and Usage

Installation

In a Terminal, use pip to install the package from PyPI [https://pypi.org/project/django-improved-user/].
To use the UserFactory provided
by the package to allow for testing with factory_boy [https://github.com/FactoryBoy/factory_boy], include it
in the installation.

$ pip install django-improved-user[factory]

If factory_boy [https://github.com/FactoryBoy/factory_boy] is unnecessary, it can be omitted by installing normally.

$ pip install django-improved-user

Configuration and Usage

	In a Django project, create a new app. For the purposes of this
documentation, we will assume the name of your new app is
user_app, but you could name it whatever you wish.

$ python3 manage.py startapp user_app

	In your project’s settings, add user_app.apps.UserAppConfig to
INSTALLED_APPS (replace user_app and UserAppConfig
as necessary).

	In user_app/models.py, import Improved User’s
AbstractUser.

from improved_user.model_mixins import AbstractUser

	Create a new User model. If you omit comments, you may need
to add pass to the line below the class.

class User(AbstractUser):
 """A User model that extends the Improved User"""

Attention

If you add your own fields to the model, you may wish to modify
REQUIRED_FIELDS [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.REQUIRED_FIELDS].

	Define or replace AUTH_USER_MODEL [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTH_USER_MODEL] in your project settings
with the new model, as below (replace user_app with the name
of your own app).

AUTH_USER_MODEL='user_app.User'

Tip

Remember to use get_user_model() [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.get_user_model] to
get your new model. Don’t import it directly!

	In Django > 1.9, while still in settings, change
UserAttributeSimilarityValidator to match correct
AbstractUser fields,
as shown below.

AUTH_PREFIX = 'django.contrib.auth.password_validation.'
AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': AUTH_PREFIX + 'UserAttributeSimilarityValidator',
 'OPTIONS': {
 'user_attributes': ('email', 'full_name', 'short_name')
 },
 },
 # include other password validators here
]

	You’re done! 🎉 Run migrations or go back to programming the rest
of your project.

Note

Improved user also comes with forms, test factories, and an admin panel.
Take a look at the Package Reference for more information.

Quickstart: Contributing

First off, thanks for taking the time to contribute! ✨🎉

This document assumes that you have forked and cloned the repository to
work on the package locally. If you are unsure how to do this, please
see the How to Contribute documentation.

To test the package, start by installing it locally.

$ pip install -r requirements.txt
$ python setup.py develop

To run the test suite on a single version of Django (assuming you have a
version of Django installed), run the runtests.py script from the
root of the project.

$ python runtests.py

You can limit tests or pass paramaters as when using manage.py test.

$./runtests.py tests.test_basic -v 3

If you have all of the supported Python versions installed (Python 3.4,
3.5, 3.6, and 3.7), you may use tox to run all linters and test the
package with multiple versions of Python and Django.

$ tox

You may also limit tests to specific environments or test suites with
tox. For instance:

$ tox -e py36-django111-unit tests.test_basic
$ tox -e py36-django111-integration user_integration.tests.TestViews.test_home

Any change to the code should first be discussed in an issue.

For any changes, please create a new branch, make your changes, and open
a pull request on github agains the development branch. Refer to the
issue you are fixing or building. To make review of the PR easier,
please commit small, targeted changes. Multiple small commits with
clear messages make reviewing changes easier. Rebasing your
branch to help clean up your changes is encouraged. Please remember that
this is a volunteer-driven project; we will look at your PR as soon as
possible.

Project Rationale

While working together in late 2016, Russell Keith-Magee [https://cecinestpasun.com] and Andrew
Pinkham [http://andrewsforge.com]— original authors of the project—discussed the repetitive
nature of rebuilding a best-practices email-based User model in new
Django projects. The two were tired of redoing the same work, and
decided to open-source code based on what they’d learned previously.

Russell’s Red User, Blue User, MyUser, auth.User talk from DjangoCon
US 2013 and PyCon AU 2017 (video below) provides a breakdown of the
problems with Django’s existing approach to identity-handling, as well
as an introduction to using custom User models in Django.

 Select a Configuration Method for Improved User

Select a Configuration Method for Improved User

The goal of this package is to improve your project’s User model. To
that end, Improved User may be used in three different ways. You may:

	inherit AbstractUser
in your own User model (extension);

	use the supplied User model
directly (integration);

	create your own User model using the supplied model mix-in classes
(replacement).

Tip

It is generally considered a good idea to change the User
model as infrequently and as little as possible, given the
possibility of security problems. Creating a Profile
model—which has a foreign key to the User model—to store
your users’ information can help avoid changes to the User
model.

Extension Method

The extension method is the recommended method to use when configuring
Improved User. Instructions for this method are found in
Quickstart: Using Improved User. This method gives the developer the most control and
flexibility, at the cost of having slightly extra code. This method is
the least likely to cause you problems in the long run, as it grants you
control of the model fields and migrations for your User model,
and gives you the opportunity of entirely removing Improved User in the
future if you need to.

Integration Method

The integration option is the simplest, and uses the least code.
However, it is also the least flexible, as it assumes that you will
never change the structure of the User
model. While this method may work fine for many, the amount of work
required to deal with any potential future change is very high. In many
ways, it is the most similar to Django’s own
User [http://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User]: you gain all of the benefits
of the class directly, but forgo the ability to control or remove the
model in the future without serious work. You may refer to
How To: Integrate Improved User Directly to use this method.

Warning

It will always be possible to switch between the extension and
replacement methods, but is difficult to migrate to or from the
integration method.

Replacement Method

The replacement method comes with the same trade-offs as the extension
method, but should be used in the event any of the fields included in
the AbstractUser are not
desired. We recommend this method only to those very familiar with
Django. For more information, please refer to
How To: Create a Custom User using Mixins.

 Warning about Email Case-Sensitivity

Warning about Email Case-Sensitivity

RFC 5321 [https://tools.ietf.org/rfc/rfc5321.txt] states that the mailbox in mailbox@hostname of an
email format is case-sensitive. ANDREW@example.com and
andrew@example.com are therefore different email addresses (the
domain is case-insensitive).

Django’s EmailField [http://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.EmailField] follows the RFC, and so,
therefore, does Improved User.

Today, many email providers have made their email systems
case-insensitive. However, not all providers have done so. As such, if
we were to provide a custom case-insensitive EmailField, we may be
alienating your users without you even knowing!

What’s more, we follow the RFC because not doing so can cause obscure
security issues [https://www.schneier.com/blog/archives/2018/04/obscure_e-mail_.html].

When creating your project’s templates, we recommend reminding your
users that their emails may be case-sensitive, and that the username
on this site is definitely case-sensitive.

Even if email case-sensitivity becomes a problem on your site, we
recommend you continue to use case-sensitive email fields so that you
retain case-sensitive data. Instead, rely on case-insensitive selection
and filtering to find and authenticate users (lowercase database indexes
can make this quite fast). These decisions and code are outside the
scope of this project and we therefore do not provide any work on this
front.

 How To: Integrate Improved User Directly

How To: Integrate Improved User Directly

Warning

This configuration method is but one of three, and may not make the
most sense for your project. Please read
Select a Configuration Method for Improved User before continuing, or else follow
the instructions in Quickstart: Using Improved User.

In a new Django project, perform the following steps in the
settings.py file or base settings file.

	Add improved_user.apps.ImprovedUserConfig
to INSTALLED_APPS

	Define or replace AUTH_USER_MODEL with the new model, as
below.

AUTH_USER_MODEL='improved_user.User'

	In Django > 1.9, change UserAttributeSimilarityValidator to
match correct User fields, as shown below.

AUTH_PREFIX = 'django.contrib.auth.password_validation.'
AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': AUTH_PREFIX + 'UserAttributeSimilarityValidator',
 'OPTIONS': {
 'user_attributes': ('email', 'full_name', 'short_name')
 },
 },
 # include other password validators here
]

Note

Improved user also comes with forms, test factories, and an admin panel.
Take a look at the Package Reference for more information.

 How To: Create a Custom User using Mixins

How To: Create a Custom User using Mixins

Warning

This configuration method is but one of three, and may not make the
most sense for your project. Please read
Select a Configuration Method for Improved User before continuing, or else follow
the instructions in Quickstart: Using Improved User.

The User and
AbstractUser classes supplied by
the package are not always what you want. In some cases, they may supply
fields you do not need or wish for. This tutorial demonstrates how to
create User models using the provided mix-in classes,
effectively building the model from scratch.

In this tutorial, we will create a new custom User that has an email
field and password, but which does not feature either the short_name
or full_name fields.

Warning

Not supplying methods for names on the User model will cause
problems with Django’s Admin.

Tip

If you’re looking to extend the
User model, rather than replace
it as shown in this tutorial, use the following steps:

	inherit AbstractUser
(follow the instructions in Quickstart: Using Improved User to see how)

	add new fields as desired

	override
REQUIRED_FIELDS [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.REQUIRED_FIELDS]
if necessary (remembering to put 'short_name',
'full_name' in the list)

In an existing app, in the models.py file, we start by importing the
tools we need to build the model. We first import classes from Django.

from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin
from django.utils.translation import ugettext_lazy as _

AbstractBaseUser [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser] and
PermissionsMixin [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.PermissionsMixin] will serve as a
base for the User (click the classes in this sentence to see Django’s
official documentation on the subject). We also import
ugettext_lazy() to enable translation
of our strings.

We then import mix-in classes from Improved User.

from improved_user.managers import UserManager
from improved_user.model_mixins import DjangoIntegrationMixin, EmailAuthMixin

The DjangoIntegrationMixin class
provides fields that allow the model to integrate with Django’s default
Authentication Backend as well as a field to allow for integration with
Django’s Admin.

The EmailAuthMixin creates an
EmailField [http://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.EmailField] and sets the field to be used
as the username during the authentication process.

The UserManager is a custom model
manager that provides the
create_user() and
create_superuser() methods
used in Django.

Danger

Improved Users’ custom
UserManager is intended to work
with subclasses of EmailAuthMixin,
and will likely not work with your User subclass if you are using a
different field for your username. You will, in that case, need to
create your own UserManager. The source code for Improved Users’
UserManager as well as Django’s
BaseUserManager [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.BaseUserManager] and
UserManager [http://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.UserManager] would likely prove
helpful.

Note

If you wanted to create a User model with a field other than email
for username, you would set the
USERNAME_FIELD [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.USERNAME_FIELD] on
your User model to the name of the field that should serve as the
username. Please take a look at the source of
EmailAuthMixin for an example of
this.

With all our tools in place, we can now create a User model. We start by
creating a class that inherits all of the classes we have imported, and
then we tie the UserManager to the
new model.

class User(DjangoIntegrationMixin, EmailAuthMixin,
 PermissionsMixin, AbstractBaseUser):
 """A user created using mix-ins from Django and improved-user

 Note that the lack of name methods will cause errors in the Admin
 """
 objects = UserManager()

For good measure, we can specify the name and verbose name of the model,
making sure to internationalize the strings. Our full and final
models.py file is shown below.

"""A User model created by django-improved-user mixins"""
from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin
from django.utils.translation import ugettext_lazy as _

from improved_user.managers import UserManager
from improved_user.model_mixins import DjangoIntegrationMixin, EmailAuthMixin

class User(DjangoIntegrationMixin, EmailAuthMixin,
 PermissionsMixin, AbstractBaseUser):
 """A user created using mix-ins from Django and improved-user

 Note that the lack of name methods will cause errors in the Admin
 """
 objects = UserManager()

 class Meta:
 verbose_name = _('user')
 verbose_name_plural = _('users')

Tip

Setting abstract = True in the Meta class would allow the
class above to be an AbstractUser model similar to
AbstractUser

For all of the classes you may use to create your own User
model, please see model_mixins.

 How To: Use Improved User in Data Migrations

How To: Use Improved User in Data Migrations

Creating users in data migrations [http://docs.djangoproject.com/en/stable/topics/migrations/#data-migrations] is
discouraged as doing so represents a potential security risk, as
passwords are stored in plaintext in the migration. However, doing so in
proof-of-concepts or in special cases may be necessary, and the steps
below will demonstrate how to create and remove new users in a Django
data migration.

The django-improved-user package intentionally disallows use of
UserManager in data migrations (we
forgo the use of model managers in migrations [http://docs.djangoproject.com/en/stable/topics/migrations/#using-managers-in-migrations]). The
create_user() and
create_superuser() methods
are thus both unavailable when using data migrations. Both of these
methods rely on User model methods
which are unavailable in Historical models [http://docs.djangoproject.com/en/stable/topics/migrations/#historical-models], so we could
not use them even if we wanted to (short of refactoring large parts of
code currently inherited by Django).

We therefore rely on the standard
Manager [http://docs.djangoproject.com/en/stable/topics/db/managers/#django.db.models.Manager], and supplement the
password creation behavior.

In an existing Django project, you will start by creating a new and
empty migration file. Replace APP_NAME in the command below with the
name of the app for which you wish to create a migration.

$ python manage.py makemigrations --empty --name=add_user APP_NAME

We start by importing the necessary tools

from django.conf import settings
from django.contrib.auth.hashers import make_password
from django.db import migrations

We will use RunPython [http://docs.djangoproject.com/en/stable/ref/migration-operations/#django.db.migrations.operations.RunPython] to
run our code. RunPython [http://docs.djangoproject.com/en/stable/ref/migration-operations/#django.db.migrations.operations.RunPython]
expects two functions with specific parameters. Our first function
creates a new user.

def add_user(apps, schema_editor):
 User = apps.get_model(*settings.AUTH_USER_MODEL.split('.'))
 User.objects.create(
 email='migrated@jambonsw.com',
 password=make_password('s3cr3tp4ssw0rd!'),
 short_name='Migrated',
 full_name='Migrated Improved User',
)

NB: Due to the lack of
UserManager or
User methods, the email field
is not validated or normalized. What’s more, the password field
is not validated against the project’s password validators. It is up
to the developer coding the migration file to provide proper values.

The second function is technically optional, but providing one makes our
lives easier and is considered best-practice. This function undoes the
first, and deletes the user we created.

def remove_user(apps, schema_editor):
 User = apps.get_model(*settings.AUTH_USER_MODEL.split('.'))
 User.objects.get(email='migrated@jambonsw.com').delete()

Finally, we use our migration functions via
RunPython [http://docs.djangoproject.com/en/stable/ref/migration-operations/#django.db.migrations.operations.RunPython] in a
django.db.migrations.Migration subclass. Please note the addition
of the dependency below. If your file already had a dependency, please
add the tuple below, but do not remove the existing tuple(s).

class Migration(migrations.Migration):

 dependencies = [
 ('improved_user', '0001_initial'),
]

 operations = [
 migrations.RunPython(add_user, remove_user),
]

The final migration file is printed in totality below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	from django.conf import settings
from django.contrib.auth.hashers import make_password
from django.db import migrations

def add_user(apps, schema_editor):
 User = apps.get_model(*settings.AUTH_USER_MODEL.split('.'))
 User.objects.create(
 email='migrated@jambonsw.com',
 password=make_password('s3cr3tp4ssw0rd!'),
 short_name='Migrated',
 full_name='Migrated Improved User',
)

def remove_user(apps, schema_editor):
 User = apps.get_model(*settings.AUTH_USER_MODEL.split('.'))
 User.objects.get(email='migrated@jambonsw.com').delete()

class Migration(migrations.Migration):

 dependencies = [
 ('improved_user', '0001_initial'),
]

 operations = [
 migrations.RunPython(add_user, remove_user),
]

You may wish to read more about Django Data Migrations [http://docs.djangoproject.com/en/stable/topics/migrations/#data-migrations] and
RunPython [http://docs.djangoproject.com/en/stable/ref/migration-operations/#django.db.migrations.operations.RunPython].

 How To: Use the Django Admin with Improved User

How To: Use the Django Admin with Improved User

Django Improved User defines an admin panel for the
User model provided by the package.

The admin panel is used automatically if you are integrating directly
with the package (see Select a Configuration Method for Improved User for more
information about different uses, and How To: Integrate Improved User Directly for
instructions on direct integration).

If you are extending the User model with no changes (as shown in the
Quickstart: Using Improved User), you can simply import the existing admin panel and
use it in your own project.

"""Demonstrate use of UserAdmin on extended User model"""
from django.contrib import admin
from django.contrib.auth import get_user_model

from improved_user.admin import UserAdmin

User = get_user_model() # pylint: disable=invalid-name
WARNING
This works, but note that any additional fields do not appear in the
Admin. For instance, the User model in this example has a verified
boolean field added to it, but this field will not appear in the
admin. Additionally, if the verified field did not have a default,
creating the User model via the admin panel would be impossible. As
such, do not use this method in production applications, and instead
define your own UserAdmin class.
admin.site.register(User, UserAdmin)

As noted in the comment in the file above, this method is not desirable
in production contexts. Additionally, it will not work in the event you
are replacing existing fields (as shown in
How To: Create a Custom User using Mixins).

When using the extension method on a real/production site, or when
replacing existing fields, you will need to build your own admin panel.
Django doesn’t supply mechanisms for simple inheritance of other admin
panels, and the package maintainers don’t know what fields you’re using,
so it’s impossible for us to provide an easily extendable or re-usable
admin panel in these scenarios. We encourage you to look at
UserAdmin for guidance (printed below
for your convenience).

"""Admin Configuration for Improved User"""
from django.contrib.auth.admin import UserAdmin as BaseUserAdmin
from django.utils.translation import ugettext_lazy as _

from .forms import UserChangeForm, UserCreationForm

class UserAdmin(BaseUserAdmin):
 """Admin panel for Improved User, mimics Django's default"""

 fieldsets = (
 (None, {"fields": ("email", "password")}),
 (_("Personal info"), {"fields": ("full_name", "short_name")}),
 (
 _("Permissions"),
 {
 "fields": (
 "is_active",
 "is_staff",
 "is_superuser",
 "groups",
 "user_permissions",
),
 },
),
 (_("Important dates"), {"fields": ("last_login", "date_joined")}),
)
 add_fieldsets = (
 (
 None,
 {
 "classes": ("wide",),
 "fields": ("email", "short_name", "password1", "password2"),
 },
),
)
 form = UserChangeForm
 add_form = UserCreationForm
 list_display = ("email", "full_name", "short_name", "is_staff")
 search_fields = ("email", "full_name", "short_name")
 ordering = ("email",)

Note

To allow the class above to be imported in demo situations, the
module is lacking a call to register the UserAdmin class.
When you create your own class, you will need code similar to the
snippet below.

from django.contrib import admin
from django.contrib.auth import get_user_model

User = get_user_model()
admin.site.register(User, NewUserAdmin)

 How to Contribute

How to Contribute

First off, thanks for taking the time to contribute! ✨🎉

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given. The following is a
set of guidelines for contributing to django-improved-user, hosted on
Github [https://github.com/jambonsw/django-improved-user]. These are mostly guidelines, not rules. Use your best
judgment, and feel free to propose changes to this document in a pull
request.

Please remember that this is a volunteer-driven project. We will look at
the issues and pull requests as soon as possible.

	Code of Conduct

	Types of Contributions

	Report Bugs

	Fix Bugs

	Write (or Request) Documentation

	Your First Contribution

	Your First Code Contribution

	Your First Documentation Contribution

Code of Conduct

This project is subject to a Code of Conduct [https://github.com/jambonsw/django-improved-user/blob/development/CODE_OF_CONDUCT.md]. By participating, you
are expected to uphold this code.

Please be respectful to other developers.

Types of Contributions

You can contribute in many ways:

Report Bugs

Please report bugs on the Github issue tracker [https://github.com/jambonsw/django-improved-user/issues]. Search the tracker to
make sure someone else hasn’t already reported the issue. If you find
your the problem has already been reported, feel free to add more
information if appropriate. If you don’t find the problem reported,
please open a new issue, and follow the guidelines set forth in the text
field.

Fix Bugs

Look through the Github issue tracker [https://github.com/jambonsw/django-improved-user/issues] for bugs. Anything tagged with
“bug” and “help wanted” is open to whoever wants to implement it. If
someone has been assigned, or notes that it is claimed in the comments,
please reach out to them to work together on the issue to avoid
duplicating work. Note that, as volunteers, people sometime are unable
to complete work they start, and that it is reasonable after a certain
amount of time to assume they are no longer working on the issue. Use
your best judgment to assess the situation.

Write (or Request) Documentation

The documentation aims to provide reference material, how-to guides, and
a general tutorial for getting started with Django and
django-improved-user. If you believe the documentation can be expanded
or added to, your contribution would be welcomed.

If you are running into a problem, and believe that some documentation
could clarify the problem (or the solution!) please feel free to request
documentation on the Github issue tracker [https://github.com/jambonsw/django-improved-user/issues].

For more about different kinds of documentations and how to think about
the differences, please watch Daniele Procida’s PyCon US 2017 talk [https://www.youtube.com/watch?v=azf6yzuJt54] on
the subject.

Your First Contribution

Ready to contribute? Let’s get django-improved-user working on your
local machine.

This package relies on Python, pip, and Django. Please make sure you
have the first two installed.

To get started, fork the git repository to your own account using the
fork button on the top right of the Github interface. You now have your
own fork of the project! Clone your fork of the repository using the
command below, but with your own username.

$ git clone git@github.com:YOUR_USERNAME/django-improved-user.git

We recommend the use of virtual environments when developing
(generally). If you are not familiar with virtual environments, take a
look at Python’s venv documentation [https://docs.python.org/3/library/venv.html#module-venv]. Virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/] is also a
favorite.

You can now install all of the dependencies required to develop the
project. Use pip to install all dependencies, as demonstrated below.

$ pip install -r requirements.txt

If you are modifying code, keep reading. If you are changing
documentation, skip to the next section.

Your First Code Contribution

Before making any changes, let’s first make sure all the tests pass. To
run the test suite on a single version of Django, you will need to
install Django and the package (in development mode). Use the command
below to do both.

$ python setup.py develop

Run the runtests.py script from the root of the project to test the
django-improved-user project.

$ python runtests.py

You can limit the tests or pass paramaters as if you had called Django’s
manage.py test.

$./runtests.py tests.test_basic -v 3

If you have Python 3.4, 3.5, and 3.6 installed on your system, you will
be able to test the package under all required conditions. The project
uses tox to make this easy. This will use all the linters and test the
package with multiple Python and Django versions.

$ tox

Note that any change made to this project must meet the linting rules
and tests run by tox. These rules are double-checked by TravisCI and
AppVeyor. Furthermore, changes in code must maintain or increase
code-coverage unless this is unreasonable.

If your tests all pass, you are ready to make changes! If not, please
open an issue in Github detailing the test failure you are seeing.

Create a new branch in the repository. Name the branch descriptively,
and reference the the github issue if applicable. Below are a few
examples of what that command might look like.

$ git checkout -b add_how_to_subclass_abstract_user_guide
$ git checkout -b issue_45_allow_whitespace_in_passwords

Please note that all pull requests that feature code changes are
expected to reference github issues, as discussion is required for any
change.

Make your changes! We recommend a test-driven approach to development.
Please remember to update any relevant documentation. Make your commits
small, and target each commit to do a single thing. If you are
comfortable rebasing git commits, please do so at the end - providing
small, targeted, organized commits can make reviewing code radically
easier, and we will be grateful for it.

Once you are done, push your changes to github, and open a pull request
via the interface. Please follow all of the instructions in the pull
request textfield when doing so, as it will help us understand and
review your code.

Congratulations on opening a pull request! 🎉

Your First Documentation Contribution

If it isn’t documented, it doesn’t exist.

—Mike Pope [http://www.mikepope.com/blog/DisplayBlog.aspx?permalink=1680]

Documentation is crucial, and I am thrilled to get your help writing it!

All of the documentation is written in reStructuredText [http://docutils.sourceforge.net/rst.html], sometimes
called rst. Some of the documents (such as this one!) are in the root
of the Github [https://github.com/jambonsw/django-improved-user] project, but the vast majority exist in the docs
directory. The documents found in this directory are compiled to HTML by
Sphinx [http://www.sphinx-doc.org/] (which has a primer on rst [http://www.sphinx-doc.org/en/stable/rest.html#rst-primer]).

You may use the Makefile in the docs directory to run Sphinx.

$ cd docs
$ make clean && make html

If you browse to _build/html (within the docs directory), you’ll
find a local build of all the documentation! Open any of the HTML files
in a browser to read the documentation.

Alternatively, you can use tox to build the documentation (requires
that Python 3.6 be installed). This is more of a check, as navigating to
the built files is less easy.

$ tox -e docs

The documentation automatically builds reference documentation for the
project. To update these reference documents, you will need to change
the Python docstrings in the code itself. Corrections and expansions to
existing docs, as well as new tutorials and how-to guides are welcome
additions. If you had a pain point while using this project, and you
would like to add to an existing document or else to write a new one,
you are encouraged to do it!

If you run into an problems or have a question, please ask it on the
Github issue tracker [https://github.com/jambonsw/django-improved-user/issues] (after making sure someone hasn’t already asked
and answered the question!).

Once you have made changes to the documents in question, you’ll want to
make sure that Sphinx builds the documentation without any errors.

Commit your changes, and push them to your local branch. Using the
Github interface, open a pull request to the development branch in the
main repository! Please follow all of the instructions in the pull
request textfield when doing so, as it will help us understand and
review your code.

Congratulations on opening a pull request! 🎉

 Package Reference

Package Reference

In this Document

	Overview

	Reference Documents

Overview

Django Improved User is organized like a regular Django app.

	
class improved_user.apps.ImprovedUserConfig

	Reference this class in INSTALLED_APPS to use the package.

The package provides both a concerete
User model, as well as mix-in and
abstract model classes to be used to extend the model or replace it
entirely. Please refer to Select a Configuration Method for Improved User for more
information about how to configure these models to best suit your
purposes.

The package also provides forms, test factories, and an admin panel. Please
see the reference documentation for these items below.

Finally, the actual code on Github [https://github.com/jambonsw/django-improved-user] has three example projects that may
be helpful if this documentation was not.

Reference Documents

	Improved User Model

	Managers

	Mix-in Model Classes
	AbstractUser

	DjangoIntegrationMixin

	EmailAuthMixin

	FullNameMixin

	ShortNameMixin

	Forms
	UserCreationForm

	UserChangeForm

	AbstractUserCreationForm

	AbstractUserChangeForm

	Test Factories

	Django Admin Panel

 Improved User Model

Improved User Model

	
class improved_user.models.User(email, password, short_name=None, full_name=None)[source]

	Bases: improved_user.model_mixins.AbstractUser

The Improved User Model is intended to be used out-of-the-box.

Do not import this model directly: use
get_user_model() [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.get_user_model].

	Parameters

	
	id (AutoField) – Id

	date_joined (DateTimeField) – Date joined

	email (EmailField) – Email address

	full_name (CharField) – Full name

	groups (ManyToManyField) – The groups this user belongs to. A user will get all permissions granted to each of their groups.

	is_active (BooleanField) – Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

	is_staff (BooleanField) – Designates whether the user can log into the admin site.

	is_superuser (BooleanField) – Designates that this user has all permissions without explicitly assigning them.

	last_login (DateTimeField) – Last login

	password (CharField) – Password

	short_name (CharField) – Short name

	user_permissions (ManyToManyField) – Specific permissions for this user.

	
check_password(raw_password)

	Return a boolean of whether the raw_password was correct. Handles
hashing formats behind the scenes.

	
clean()

	Override default clean method to normalize email.

Call super().clean() if overriding.

	
email_user(subject, message, from_email=None, **kwargs)

	Sends an email to this User.

	
get_full_name()

	Returns the full name of the user.

	
get_short_name()

	Returns the short name for the user.

	
get_username()

	Return the identifying username for this User

	
has_module_perms(app_label)

	Return True if the user has any permissions in the given app label.
Use similar logic as has_perm(), above.

	
has_perm(perm, obj=None)

	Return True if the user has the specified permission. Query all
available auth backends, but return immediately if any backend returns
True. Thus, a user who has permission from a single auth backend is
assumed to have permission in general. If an object is provided, check
permissions for that object.

	
has_perms(perm_list, obj=None)

	Return True if the user has each of the specified permissions. If
object is passed, check if the user has all required perms for it.

	
is_anonymous

	Always return False. This is a way of comparing User objects to
anonymous users.

	
is_authenticated

	Always return True. This is a way to tell if the user has been
authenticated in templates.

	
refresh_from_db(using=None, fields=None)

	Reload field values from the database.

By default, the reloading happens from the database this instance was
loaded from, or by the read router if this instance wasn’t loaded from
any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields
should be an iterable of field attnames. If fields is None, then
all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading
of the field will call this method.

 Managers

Managers

	
class improved_user.managers.UserManager[source]

	Manager for Users; overrides create commands for new fields

Meant to be interacted with via the user model.

User.objects # the UserManager
User.objects.all() # has normal Manager/UserManager methods
User.objects.create_user # overrides methods for Improved User

Set to objects [http://docs.djangoproject.com/en/stable/ref/models/class/#django.db.models.Model.objects] by
AbstractUser

	
create_superuser(email, password, **extra_fields)[source]

	Save new User with is_staff and is_superuser set to True

	
create_user(email=None, password=None, **extra_fields)[source]

	Save new User with email and password

 Mix-in Model Classes

Mix-in Model Classes

These classes are provided as tools to help build your own User models.

	AbstractUser

	DjangoIntegrationMixin

	EmailAuthMixin

	FullNameMixin

	ShortNameMixin

AbstractUser

	
class improved_user.model_mixins.AbstractUser(*args, **kwargs)[source]

	Bases: improved_user.model_mixins.DjangoIntegrationMixin, improved_user.model_mixins.FullNameMixin, improved_user.model_mixins.ShortNameMixin, improved_user.model_mixins.EmailAuthMixin, django.contrib.auth.models.PermissionsMixin [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.PermissionsMixin], django.contrib.auth.base_user.AbstractBaseUser

An abstract base class meant to be inherited (do not instantiate
this). The class provides a fully featured User model with
admin-compliant permissions. Differs from Django’s
AbstractUser [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractUser]:

	Login occurs with an email and password instead of username.

	Provides short_name and full_name instead of first_name and
last_name.

All fields other than email and password are optional.

Sets objects [http://docs.djangoproject.com/en/stable/ref/models/class/#django.db.models.Model.objects] to
UserManager.

Documentation about Django’s
AbstractBaseUser [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser] may be helpful
in understanding this class.

	Parameters

	
	date_joined (DateTimeField) – Date joined

	email (EmailField) – Email address

	full_name (CharField) – Full name

	groups (ManyToManyField) – The groups this user belongs to. A user will get all permissions granted to each of their groups.

	is_active (BooleanField) – Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

	is_staff (BooleanField) – Designates whether the user can log into the admin site.

	is_superuser (BooleanField) – Designates that this user has all permissions without explicitly assigning them.

	last_login (DateTimeField) – Last login

	password (CharField) – Password

	short_name (CharField) – Short name

	user_permissions (ManyToManyField) – Specific permissions for this user.

	
check_password(raw_password)

	Return a boolean of whether the raw_password was correct. Handles
hashing formats behind the scenes.

	
clean()

	Override default clean method to normalize email.

Call super().clean() if overriding.

	
clean_fields(exclude=None)

	Clean all fields and raise a ValidationError containing a dict
of all validation errors if any occur.

	
email_user(subject, message, from_email=None, **kwargs)

	Sends an email to this User.

	
full_clean(exclude=None, validate_unique=True)

	Call clean_fields(), clean(), and validate_unique() on the model.
Raise a ValidationError for any errors that occur.

	
get_deferred_fields()

	Return a set containing names of deferred fields for this instance.

	
get_full_name()

	Returns the full name of the user.

	
get_group_permissions(obj=None)

	Return a list of permission strings that this user has through their
groups. Query all available auth backends. If an object is passed in,
return only permissions matching this object.

	
get_session_auth_hash()

	Return an HMAC of the password field.

	
get_short_name()

	Returns the short name for the user.

	
get_username()

	Return the identifying username for this User

	
has_module_perms(app_label)

	Return True if the user has any permissions in the given app label.
Use similar logic as has_perm(), above.

	
has_perm(perm, obj=None)

	Return True if the user has the specified permission. Query all
available auth backends, but return immediately if any backend returns
True. Thus, a user who has permission from a single auth backend is
assumed to have permission in general. If an object is provided, check
permissions for that object.

	
has_perms(perm_list, obj=None)

	Return True if the user has each of the specified permissions. If
object is passed, check if the user has all required perms for it.

	
has_usable_password()

	Return False if set_unusable_password() has been called for this user.

	
is_anonymous

	Always return False. This is a way of comparing User objects to
anonymous users.

	
is_authenticated

	Always return True. This is a way to tell if the user has been
authenticated in templates.

	
refresh_from_db(using=None, fields=None)

	Reload field values from the database.

By default, the reloading happens from the database this instance was
loaded from, or by the read router if this instance wasn’t loaded from
any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields
should be an iterable of field attnames. If fields is None, then
all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading
of the field will call this method.

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
save_base(raw=False, force_insert=False, force_update=False, using=None, update_fields=None)

	Handle the parts of saving which should be done only once per save,
yet need to be done in raw saves, too. This includes some sanity
checks and signal sending.

The ‘raw’ argument is telling save_base not to save any parent
models and not to do any changes to the values before save. This
is used by fixture loading.

	
serializable_value(field_name)

	Return the value of the field name for this instance. If the field is
a foreign key, return the id value instead of the object. If there’s
no Field object with this name on the model, return the model
attribute’s value.

Used to serialize a field’s value (in the serializer, or form output,
for example). Normally, you would just access the attribute directly
and not use this method.

	
validate_unique(exclude=None)

	Check unique constraints on the model and raise ValidationError if any
failed.

DjangoIntegrationMixin

	
class improved_user.model_mixins.DjangoIntegrationMixin(*args, **kwargs)[source]

	Mixin provides fields for Django integration to work correctly

Provides permissions for Django Admin integration, as well as date
field used by authentication code.

	Parameters

	
	date_joined (DateTimeField) – Date joined

	is_active (BooleanField) – Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

	is_staff (BooleanField) – Designates whether the user can log into the admin site.

EmailAuthMixin

	
class improved_user.model_mixins.EmailAuthMixin(*args, **kwargs)[source]

	A mixin to use email as the username

	Parameters

	email (EmailField) – Email address

	
clean()[source]

	Override default clean method to normalize email.

Call super().clean() if overriding.

	
email_user(subject, message, from_email=None, **kwargs)[source]

	Sends an email to this User.

FullNameMixin

	
class improved_user.model_mixins.FullNameMixin(*args, **kwargs)[source]

	A mixin to provide an optional full name field

	Parameters

	full_name (CharField) – Full name

	
get_full_name()[source]

	Returns the full name of the user.

ShortNameMixin

	
class improved_user.model_mixins.ShortNameMixin(*args, **kwargs)[source]

	A mixin to provide an optional short name field

	Parameters

	short_name (CharField) – Short name

	
get_short_name()[source]

	Returns the short name for the user.

 Forms

Forms

Abstract forms meant to be inherited or concrete forms meant to be
used direction in your views.

Note

These forms are unnecessary starting in Django 2.1, as Django now
supports custom user models in its own forms.

	UserCreationForm

	UserChangeForm

	AbstractUserCreationForm

	AbstractUserChangeForm

UserCreationForm

	
class improved_user.forms.UserCreationForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)[source]

	Bases: improved_user.forms.AbstractUserCreationForm

A concrete implementation of AbstractUserCreationForm that uses an
e-mail address as a user’s identifier.

	Parameters

	
	email (EmailField) – Email address

	full_name (CharField) – Full name

	short_name (CharField) – Short name

	password1 (CharField) – Password

	password2 (CharField) – Enter the same password as above, for verification.

	
clean_email()[source]

	Clean email; set nice error message

Since User.email is unique, this check is redundant,
but it sets a nicer error message than the ORM. See #13147.

https://code.djangoproject.com/ticket/13147

UserChangeForm

	
class improved_user.forms.UserChangeForm(*args, **kwargs)[source]

	Bases: improved_user.forms.AbstractUserChangeForm

Form to update user, but not their password

	Parameters

	
	password (ReadOnlyPasswordHashField) – Raw passwords are not stored, so there is no way to see this user’s password, but you can change the password using this form.

	last_login (DateTimeField) – Last login

	is_superuser (BooleanField) – Designates that this user has all permissions without explicitly assigning them.

	groups (ModelMultipleChoiceField) – The groups this user belongs to. A user will get all permissions granted to each of their groups.

	user_permissions (ModelMultipleChoiceField) – Specific permissions for this user.

	is_staff (BooleanField) – Designates whether the user can log into the admin site.

	is_active (BooleanField) – Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

	date_joined (DateTimeField) – Date joined

	full_name (CharField) – Full name

	short_name (CharField) – Short name

	email (EmailField) – Email address

AbstractUserCreationForm

	
class improved_user.forms.AbstractUserCreationForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)[source]

	Bases: django.forms.models.ModelForm

A form that creates a user, with no privileges, from the given
username and password.

	Parameters

	
	password1 (CharField) – Password

	password2 (CharField) – Enter the same password as above, for verification.

	
_post_clean()[source]

	Run password validaton after clean methods

When clean methods are run, the user instance does not yet
exist. To properly compare model values agains the password (in
the UserAttributeSimilarityValidator), we wait until we have an
instance to compare against.

https://code.djangoproject.com/ticket/28127
https://github.com/django/django/pull/8408

Has no effect in Django prior to 1.9
May become unnecessary in Django 2.0 (if this superclass changes)

	
clean_password2()[source]

	Check wether password 1 and password 2 are equivalent

While ideally this would be done in clean, there is a chance a
superclass could declare clean and forget to call super. We
therefore opt to run this password mismatch check in password2
clean, but to show the error above password1 (as we are unsure
whether password 1 or password 2 contains the typo, and putting
it above password 2 may lead some users to believe the typo is
in just one).

	
save(commit=True)[source]

	Save the user; use password hasher to set password

AbstractUserChangeForm

	
class improved_user.forms.AbstractUserChangeForm(*args, **kwargs)[source]

	Bases: django.forms.models.ModelForm

Base form update User, but not their password

	Parameters

	password (ReadOnlyPasswordHashField) – Raw passwords are not stored, so there is no way to see this user’s password, but you can change the password using this form.

	
clean_password()[source]

	Change user info; not the password

We seek to change the user, but not the password.
Regardless of what the user provides, return the initial value.
This is done here, rather than on the field, because the
field does not have access to the initial value

	
get_local_password_path()[source]

	Method to return relative path to password form

Will return rel_password_url attribute on form
or else ‘../password/’. If subclasses cannot simply replace
rel_password_url, then they can override this method instead of
__init__.

 Test Factories

Test Factories

Factories to make testing with Improved User easier

	
class improved_user.factories.UserFactory[source]

	Bases: factory.django.DjangoModelFactory

Factory Boy factory for Improved User

Generates a user with a default password of password!.
The user is active, but is not staff or a superuser.
Any value can be overridden by passing in a value, as shown below.

UserFactory(
 password='mys3cr3tp4ssw0rd!',
 is_superuser=True,
)

 Django Admin Panel

Django Admin Panel

Admin Configuration for Improved User

	
class improved_user.admin.UserAdmin(model, admin_site)[source]

	Admin panel for Improved User, mimics Django’s default

	
add_form

	alias of improved_user.forms.UserCreationForm

	
form

	alias of improved_user.forms.UserChangeForm

 History

History

Next Release

	Nothing Yet!

1.0.1 (2020-02-16)

	Add flexibility to admin panel usage; document usage

1.0.0 (2018-07-28)

	Django 1.8, 1.11, 2.0, 2.1 officially supported.

	Django 1.9 and 1.10 are not tested against, as Django does not support
them, but they likely work.

	Breaking change: Model mix-in classes now exist in their own
module! Import from model_mixins instead of models. (#46 [https://github.com/jambonsw/django-improved-user/pull/46],
#96 [https://github.com/jambonsw/django-improved-user/pull/96])

	Fix issue #49 [https://github.com/jambonsw/django-improved-user/issues/49]: allow form classes to be imported without requiring
project to be in INSTALLED_APPS (See #36 [https://github.com/jambonsw/django-improved-user/issues/36] and #46 [https://github.com/jambonsw/django-improved-user/pull/46] below for
associated error and reasoning) (#50 [https://github.com/jambonsw/django-improved-user/pull/50])

	Fix issue #36 [https://github.com/jambonsw/django-improved-user/issues/36]: refactor package to allow for mix-in classes to be
imported into third-party project without requiring project to be in
INSTALLED_APPS (which would unnecessarily create unused tables in
the project). Add documentation/tutorial on subject. (#46 [https://github.com/jambonsw/django-improved-user/pull/46])

	Django 2.0, 2.1 compatibility. (#43 [https://github.com/jambonsw/django-improved-user/pull/43], #93 [https://github.com/jambonsw/django-improved-user/pull/93])

0.5.3 (2017-08-29)

	Include history of changes in online documentation. (#34 [https://github.com/jambonsw/django-improved-user/pull/34])

	Write documentation about why and how the project was built. (#34 [https://github.com/jambonsw/django-improved-user/pull/34])

	Add section about contributing documentation. (#34 [https://github.com/jambonsw/django-improved-user/pull/34])

0.5.2 (2017-08-27)

	Change package PyPI [https://pypi.org/project/django-improved-user/] license identifier for better information on
djangopackages.org detail page [https://djangopackages.org/packages/p/django-improved-user/]. See
djangopackages/djangopackages#483 [https://github.com/djangopackages/djangopackages/issues/483] for more information.

0.5.1 (2017-08-27)

	Docfix: Remove links to ReadTheDocs Stable version from ReadMe, as we
are unable to build that version until v1.0.0 release. See
rtfd/readthedocs.org#2032 [https://github.com/rtfd/readthedocs.org/issues/2032] for more information. (#31 [https://github.com/jambonsw/django-improved-user/pull/31])

0.5.0 (2017-08-26)

	Provide documentation for the package. This includes Sphinx
documentation hosted on ReadTheDocs.org, (#26 [https://github.com/jambonsw/django-improved-user/pull/26], #29 [https://github.com/jambonsw/django-improved-user/pull/29]), but also
documents to help contribute to github more easily (#26 [https://github.com/jambonsw/django-improved-user/pull/26]) as well as
a code of conduct (#26 [https://github.com/jambonsw/django-improved-user/pull/26]). The Read Me includes badges (#26 [https://github.com/jambonsw/django-improved-user/pull/26]).

	In the event the documentation isn’t enough, the project now includes
an example project demonstrating integration of django-improved-user
with Django as well as django-registration. (#28 [https://github.com/jambonsw/django-improved-user/pull/28]) This content is
used to create some of the documentation (#29 [https://github.com/jambonsw/django-improved-user/pull/29]).

	Bugfix: The UserManager was setting the last_login attribute
of new users at creation time. Reported in #25 [https://github.com/jambonsw/django-improved-user/issues/25], fixed in #27 [https://github.com/jambonsw/django-improved-user/pull/27]
(last_login is None until the user actually logs in).

0.4.0 (2017-08-14)

Warning: This is a breaking change, and migrations will conflict
with v0.3.0 due to PR #23 [https://github.com/jambonsw/django-improved-user/pull/23]

	Add UserFactory to make testing easier for developers using the
package; requires factory_boy (PR #20 [https://github.com/jambonsw/django-improved-user/pull/20])

	Split the ImprovedIdentityMixin class into atomic parts:
DjangoIntegrationMixin, FullNameMixin, ShortNameMixin,
EmailAuthMixin. This allows developers to create their own custom
AbstractUsers if needed. (PR #22 [https://github.com/jambonsw/django-improved-user/pull/22])

	Change blank to True on short_name field of User model.
(Breaking change! PR #23 [https://github.com/jambonsw/django-improved-user/pull/23]).

0.3.0 (2017-08-10)

	Integrate coverage and codecov service (PR #16 [https://github.com/jambonsw/django-improved-user/pull/16])

	Make TravisCI test builds public (first seen in PR #16 [https://github.com/jambonsw/django-improved-user/pull/16])

	Merge appropriate tests from Django master (1.11.3 is current release
at time of writing). This increases test coverage across the board and
updates the test suite to check for parity between Django’s User API
and Improved User’s API as well as check for the same security issues.
(PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	UserManager raises a friendly error if the developer tries to pass a
username argument (PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Password errors are shown above both password fields
(PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Bugfix: UserManager handles is_staff, is_active, and is_superuser
correctly (PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Bugfix: User has email normalized during Model.clean phase (PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Bugfix: UserAdmin requires short_name in both add and change
(previously only in change; PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Bugfix: UserAdmin uses correct relative path URL for password change
in all versions of Django (was not working in Django 1.9+) (PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Bugfix: Runtests correctly handles test specification (PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

0.2.0 (2017-07-30)

	Reorganize project to follow best practices (PR #9 [https://github.com/jambonsw/django-improved-user/pull/9])

	Allow setup.py to run tests by overriding test command (PR #9 [https://github.com/jambonsw/django-improved-user/pull/9])

	Test locally with Tox (PR #10 [https://github.com/jambonsw/django-improved-user/pull/10])

	Remove Django 1.9 from supported versions (PR #10 [https://github.com/jambonsw/django-improved-user/pull/10])

	Enforce styleguide with flake8, isort, and pylint.
Use flake8-commas and flake8-quotes to enhance flake8.
Override default distutils check command to check package metadata.
Use check-manifest to check contents of MANIFEST.in (PR #11 [https://github.com/jambonsw/django-improved-user/pull/11])

	Integrate https://pyup.io/ into project (PR #12 [https://github.com/jambonsw/django-improved-user/pull/12])

	Upgrade flake8 to version 3.4.1 (PR #13 [https://github.com/jambonsw/django-improved-user/pull/13])

	Make release and distribution less painful with
bumpversion package and a Makefile (PR #15 [https://github.com/jambonsw/django-improved-user/pull/15])

	Add HISTORY.rst file to provide change log (PR #15 [https://github.com/jambonsw/django-improved-user/pull/15])

0.1.1 (2017-06-28)

	Fix metadata in setup.py for warehouse
(see https://github.com/pypa/warehouse/issues/2155 and PR #8 [https://github.com/jambonsw/django-improved-user/pull/8])

0.1.0 (2017-06-28)

	Add tests for Django 1.11 (PR #5 [https://github.com/jambonsw/django-improved-user/pull/5])

	Allow for integration with UserAttributeSimilarityValidator
(see https://code.djangoproject.com/ticket/28127,
https://github.com/django/django/pull/8408, and PR #5 [https://github.com/jambonsw/django-improved-user/pull/5])

	Rename project django-improved-user (from django-simple-user)

	Make development default branch (PR #6 [https://github.com/jambonsw/django-improved-user/pull/6])

	Initial public release (PR #7 [https://github.com/jambonsw/django-improved-user/pull/7])

	Use Simplified BSD License instead of Revised BSD License (#7 [https://github.com/jambonsw/django-improved-user/pull/7])

0.0.1 (2016-10-26)

	Simplified User model for better international handling.
Includes forms and admin configuration (PR #1 [https://github.com/jambonsw/django-improved-user/pull/1])

	All tests run on TravisCI (PR #3 [https://github.com/jambonsw/django-improved-user/pull/3])

	
	Compatible with:

	
	Python 3.4, 3.5, 3.6

	Django 1.8 through 1.10 (PR #3 [https://github.com/jambonsw/django-improved-user/pull/3] and #4 [https://github.com/jambonsw/django-improved-user/pull/4])

 Python Module Index

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 improved_user	

 	
 	
 improved_user.admin	

 	
 	
 improved_user.apps	

 	
 	
 improved_user.factories	

 	
 	
 improved_user.forms	

 	
 	
 improved_user.managers	

 	
 	
 improved_user.model_mixins	

 	
 	
 improved_user.models	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | R
 | S
 | U
 | V

_

 	
 	_post_clean() (improved_user.forms.AbstractUserCreationForm method)

A

 	
 	AbstractUser (class in improved_user.model_mixins)

 	AbstractUserChangeForm (class in improved_user.forms)

 	
 	AbstractUserCreationForm (class in improved_user.forms)

 	add_form (improved_user.admin.UserAdmin attribute)

C

 	
 	check_password() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

 	clean() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.model_mixins.EmailAuthMixin method)

 	(improved_user.models.User method)

 	
 	clean_email() (improved_user.forms.UserCreationForm method)

 	clean_fields() (improved_user.model_mixins.AbstractUser method)

 	clean_password() (improved_user.forms.AbstractUserChangeForm method)

 	clean_password2() (improved_user.forms.AbstractUserCreationForm method)

 	create_superuser() (improved_user.managers.UserManager method)

 	create_user() (improved_user.managers.UserManager method)

D

 	
 	DjangoIntegrationMixin (class in improved_user.model_mixins)

E

 	
 	email_user() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.model_mixins.EmailAuthMixin method)

 	(improved_user.models.User method)

 	
 	EmailAuthMixin (class in improved_user.model_mixins)

F

 	
 	form (improved_user.admin.UserAdmin attribute)

 	
 	full_clean() (improved_user.model_mixins.AbstractUser method)

 	FullNameMixin (class in improved_user.model_mixins)

G

 	
 	get_deferred_fields() (improved_user.model_mixins.AbstractUser method)

 	get_full_name() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.model_mixins.FullNameMixin method)

 	(improved_user.models.User method)

 	get_group_permissions() (improved_user.model_mixins.AbstractUser method)

 	get_local_password_path() (improved_user.forms.AbstractUserChangeForm method)

 	
 	get_session_auth_hash() (improved_user.model_mixins.AbstractUser method)

 	get_short_name() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.model_mixins.ShortNameMixin method)

 	(improved_user.models.User method)

 	get_username() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

H

 	
 	has_module_perms() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

 	has_perm() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

 	
 	has_perms() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

 	has_usable_password() (improved_user.model_mixins.AbstractUser method)

I

 	
 	improved_user.admin (module)

 	improved_user.apps (module)

 	improved_user.apps.ImprovedUserConfig (class in improved_user.apps)

 	improved_user.factories (module)

 	improved_user.forms (module)

 	improved_user.managers (module)

 	
 	improved_user.model_mixins (module)

 	improved_user.models (module)

 	is_anonymous (improved_user.model_mixins.AbstractUser attribute)

 	(improved_user.models.User attribute)

 	is_authenticated (improved_user.model_mixins.AbstractUser attribute)

 	(improved_user.models.User attribute)

R

 	
 	refresh_from_db() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

S

 	
 	save() (improved_user.forms.AbstractUserCreationForm method)

 	(improved_user.model_mixins.AbstractUser method)

 	
 	save_base() (improved_user.model_mixins.AbstractUser method)

 	serializable_value() (improved_user.model_mixins.AbstractUser method)

 	ShortNameMixin (class in improved_user.model_mixins)

U

 	
 	User (class in improved_user.models)

 	UserAdmin (class in improved_user.admin)

 	UserChangeForm (class in improved_user.forms)

 	
 	UserCreationForm (class in improved_user.forms)

 	UserFactory (class in improved_user.factories)

 	UserManager (class in improved_user.managers)

V

 	
 	validate_unique() (improved_user.model_mixins.AbstractUser method)

 Overview: module code

 All modules for which code is available

	django.contrib.auth.base_user

	django.contrib.auth.models

	django.db.models.base

	improved_user.admin

	improved_user.factories

	improved_user.forms

	improved_user.managers

	improved_user.model_mixins

	improved_user.models

 django.contrib.auth.base_user

 Source code for django.contrib.auth.base_user

"""
This module allows importing AbstractBaseUser even when django.contrib.auth is
not in INSTALLED_APPS.
"""
import unicodedata

from django.contrib.auth import password_validation
from django.contrib.auth.hashers import (
 check_password, is_password_usable, make_password,
)
from django.db import models
from django.utils.crypto import get_random_string, salted_hmac
from django.utils.translation import gettext_lazy as _

class BaseUserManager(models.Manager):

 @classmethod
 def normalize_email(cls, email):
 """
 Normalize the email address by lowercasing the domain part of it.
 """
 email = email or ''
 try:
 email_name, domain_part = email.strip().rsplit('@', 1)
 except ValueError:
 pass
 else:
 email = email_name + '@' + domain_part.lower()
 return email

 def make_random_password(self, length=10,
 allowed_chars='abcdefghjkmnpqrstuvwxyz'
 'ABCDEFGHJKLMNPQRSTUVWXYZ'
 '23456789'):
 """
 Generate a random password with the given length and given
 allowed_chars. The default value of allowed_chars does not have "I" or
 "O" or letters and digits that look similar -- just to avoid confusion.
 """
 return get_random_string(length, allowed_chars)

 def get_by_natural_key(self, username):
 return self.get(**{self.model.USERNAME_FIELD: username})

class AbstractBaseUser(models.Model):
 password = models.CharField(_('password'), max_length=128)
 last_login = models.DateTimeField(_('last login'), blank=True, null=True)

 is_active = True

 REQUIRED_FIELDS = []

 # Stores the raw password if set_password() is called so that it can
 # be passed to password_changed() after the model is saved.
 _password = None

 class Meta:
 abstract = True

 def get_username(self):
 "Return the identifying username for this User"
 return getattr(self, self.USERNAME_FIELD)

 def __str__(self):
 return self.get_username()

 def clean(self):
 setattr(self, self.USERNAME_FIELD, self.normalize_username(self.get_username()))

 def save(self, *args, **kwargs):
 super().save(*args, **kwargs)
 if self._password is not None:
 password_validation.password_changed(self._password, self)
 self._password = None

 def natural_key(self):
 return (self.get_username(),)

 @property
 def is_anonymous(self):
 """
 Always return False. This is a way of comparing User objects to
 anonymous users.
 """
 return False

 @property
 def is_authenticated(self):
 """
 Always return True. This is a way to tell if the user has been
 authenticated in templates.
 """
 return True

 def set_password(self, raw_password):
 self.password = make_password(raw_password)
 self._password = raw_password

 def check_password(self, raw_password):
 """
 Return a boolean of whether the raw_password was correct. Handles
 hashing formats behind the scenes.
 """
 def setter(raw_password):
 self.set_password(raw_password)
 # Password hash upgrades shouldn't be considered password changes.
 self._password = None
 self.save(update_fields=["password"])
 return check_password(raw_password, self.password, setter)

 def set_unusable_password(self):
 # Set a value that will never be a valid hash
 self.password = make_password(None)

 def has_usable_password(self):
 """
 Return False if set_unusable_password() has been called for this user.
 """
 return is_password_usable(self.password)

 def get_session_auth_hash(self):
 """
 Return an HMAC of the password field.
 """
 key_salt = "django.contrib.auth.models.AbstractBaseUser.get_session_auth_hash"
 return salted_hmac(key_salt, self.password).hexdigest()

 @classmethod
 def get_email_field_name(cls):
 try:
 return cls.EMAIL_FIELD
 except AttributeError:
 return 'email'

 @classmethod
 def normalize_username(cls, username):
 return unicodedata.normalize('NFKC', username) if isinstance(username, str) else username

 django.contrib.auth.models

 Source code for django.contrib.auth.models

from django.contrib import auth
from django.contrib.auth.base_user import AbstractBaseUser, BaseUserManager
from django.contrib.contenttypes.models import ContentType
from django.core.exceptions import PermissionDenied
from django.core.mail import send_mail
from django.db import models
from django.db.models.manager import EmptyManager
from django.utils import timezone
from django.utils.translation import gettext_lazy as _

from .validators import UnicodeUsernameValidator

def update_last_login(sender, user, **kwargs):
 """
 A signal receiver which updates the last_login date for
 the user logging in.
 """
 user.last_login = timezone.now()
 user.save(update_fields=['last_login'])

class PermissionManager(models.Manager):
 use_in_migrations = True

 def get_by_natural_key(self, codename, app_label, model):
 return self.get(
 codename=codename,
 content_type=ContentType.objects.db_manager(self.db).get_by_natural_key(app_label, model),
)

class Permission(models.Model):
 """
 The permissions system provides a way to assign permissions to specific
 users and groups of users.

 The permission system is used by the Django admin site, but may also be
 useful in your own code. The Django admin site uses permissions as follows:

 - The "add" permission limits the user's ability to view the "add" form
 and add an object.
 - The "change" permission limits a user's ability to view the change
 list, view the "change" form and change an object.
 - The "delete" permission limits the ability to delete an object.
 - The "view" permission limits the ability to view an object.

 Permissions are set globally per type of object, not per specific object
 instance. It is possible to say "Mary may change news stories," but it's
 not currently possible to say "Mary may change news stories, but only the
 ones she created herself" or "Mary may only change news stories that have a
 certain status or publication date."

 The permissions listed above are automatically created for each model.
 """
 name = models.CharField(_('name'), max_length=255)
 content_type = models.ForeignKey(
 ContentType,
 models.CASCADE,
 verbose_name=_('content type'),
)
 codename = models.CharField(_('codename'), max_length=100)
 objects = PermissionManager()

 class Meta:
 verbose_name = _('permission')
 verbose_name_plural = _('permissions')
 unique_together = (('content_type', 'codename'),)
 ordering = ('content_type__app_label', 'content_type__model',
 'codename')

 def __str__(self):
 return "%s | %s | %s" % (
 self.content_type.app_label,
 self.content_type,
 self.name,
)

 def natural_key(self):
 return (self.codename,) + self.content_type.natural_key()
 natural_key.dependencies = ['contenttypes.contenttype']

class GroupManager(models.Manager):
 """
 The manager for the auth's Group model.
 """
 use_in_migrations = True

 def get_by_natural_key(self, name):
 return self.get(name=name)

class Group(models.Model):
 """
 Groups are a generic way of categorizing users to apply permissions, or
 some other label, to those users. A user can belong to any number of
 groups.

 A user in a group automatically has all the permissions granted to that
 group. For example, if the group 'Site editors' has the permission
 can_edit_home_page, any user in that group will have that permission.

 Beyond permissions, groups are a convenient way to categorize users to
 apply some label, or extended functionality, to them. For example, you
 could create a group 'Special users', and you could write code that would
 do special things to those users -- such as giving them access to a
 members-only portion of your site, or sending them members-only email
 messages.
 """
 name = models.CharField(_('name'), max_length=80, unique=True)
 permissions = models.ManyToManyField(
 Permission,
 verbose_name=_('permissions'),
 blank=True,
)

 objects = GroupManager()

 class Meta:
 verbose_name = _('group')
 verbose_name_plural = _('groups')

 def __str__(self):
 return self.name

 def natural_key(self):
 return (self.name,)

class UserManager(BaseUserManager):
 use_in_migrations = True

 def _create_user(self, username, email, password, **extra_fields):
 """
 Create and save a user with the given username, email, and password.
 """
 if not username:
 raise ValueError('The given username must be set')
 email = self.normalize_email(email)
 username = self.model.normalize_username(username)
 user = self.model(username=username, email=email, **extra_fields)
 user.set_password(password)
 user.save(using=self._db)
 return user

 def create_user(self, username, email=None, password=None, **extra_fields):
 extra_fields.setdefault('is_staff', False)
 extra_fields.setdefault('is_superuser', False)
 return self._create_user(username, email, password, **extra_fields)

 def create_superuser(self, username, email, password, **extra_fields):
 extra_fields.setdefault('is_staff', True)
 extra_fields.setdefault('is_superuser', True)

 if extra_fields.get('is_staff') is not True:
 raise ValueError('Superuser must have is_staff=True.')
 if extra_fields.get('is_superuser') is not True:
 raise ValueError('Superuser must have is_superuser=True.')

 return self._create_user(username, email, password, **extra_fields)

A few helper functions for common logic between User and AnonymousUser.
def _user_get_all_permissions(user, obj):
 permissions = set()
 for backend in auth.get_backends():
 if hasattr(backend, "get_all_permissions"):
 permissions.update(backend.get_all_permissions(user, obj))
 return permissions

def _user_has_perm(user, perm, obj):
 """
 A backend can raise `PermissionDenied` to short-circuit permission checking.
 """
 for backend in auth.get_backends():
 if not hasattr(backend, 'has_perm'):
 continue
 try:
 if backend.has_perm(user, perm, obj):
 return True
 except PermissionDenied:
 return False
 return False

def _user_has_module_perms(user, app_label):
 """
 A backend can raise `PermissionDenied` to short-circuit permission checking.
 """
 for backend in auth.get_backends():
 if not hasattr(backend, 'has_module_perms'):
 continue
 try:
 if backend.has_module_perms(user, app_label):
 return True
 except PermissionDenied:
 return False
 return False

class PermissionsMixin(models.Model):
 """
 Add the fields and methods necessary to support the Group and Permission
 models using the ModelBackend.
 """
 is_superuser = models.BooleanField(
 _('superuser status'),
 default=False,
 help_text=_(
 'Designates that this user has all permissions without '
 'explicitly assigning them.'
),
)
 groups = models.ManyToManyField(
 Group,
 verbose_name=_('groups'),
 blank=True,
 help_text=_(
 'The groups this user belongs to. A user will get all permissions '
 'granted to each of their groups.'
),
 related_name="user_set",
 related_query_name="user",
)
 user_permissions = models.ManyToManyField(
 Permission,
 verbose_name=_('user permissions'),
 blank=True,
 help_text=_('Specific permissions for this user.'),
 related_name="user_set",
 related_query_name="user",
)

 class Meta:
 abstract = True

 def get_group_permissions(self, obj=None):
 """
 Return a list of permission strings that this user has through their
 groups. Query all available auth backends. If an object is passed in,
 return only permissions matching this object.
 """
 permissions = set()
 for backend in auth.get_backends():
 if hasattr(backend, "get_group_permissions"):
 permissions.update(backend.get_group_permissions(self, obj))
 return permissions

 def get_all_permissions(self, obj=None):
 return _user_get_all_permissions(self, obj)

 def has_perm(self, perm, obj=None):
 """
 Return True if the user has the specified permission. Query all
 available auth backends, but return immediately if any backend returns
 True. Thus, a user who has permission from a single auth backend is
 assumed to have permission in general. If an object is provided, check
 permissions for that object.
 """
 # Active superusers have all permissions.
 if self.is_active and self.is_superuser:
 return True

 # Otherwise we need to check the backends.
 return _user_has_perm(self, perm, obj)

 def has_perms(self, perm_list, obj=None):
 """
 Return True if the user has each of the specified permissions. If
 object is passed, check if the user has all required perms for it.
 """
 return all(self.has_perm(perm, obj) for perm in perm_list)

 def has_module_perms(self, app_label):
 """
 Return True if the user has any permissions in the given app label.
 Use similar logic as has_perm(), above.
 """
 # Active superusers have all permissions.
 if self.is_active and self.is_superuser:
 return True

 return _user_has_module_perms(self, app_label)

class AbstractUser(AbstractBaseUser, PermissionsMixin):
 """
 An abstract base class implementing a fully featured User model with
 admin-compliant permissions.

 Username and password are required. Other fields are optional.
 """
 username_validator = UnicodeUsernameValidator()

 username = models.CharField(
 _('username'),
 max_length=150,
 unique=True,
 help_text=_('Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.'),
 validators=[username_validator],
 error_messages={
 'unique': _("A user with that username already exists."),
 },
)
 first_name = models.CharField(_('first name'), max_length=30, blank=True)
 last_name = models.CharField(_('last name'), max_length=150, blank=True)
 email = models.EmailField(_('email address'), blank=True)
 is_staff = models.BooleanField(
 _('staff status'),
 default=False,
 help_text=_('Designates whether the user can log into this admin site.'),
)
 is_active = models.BooleanField(
 _('active'),
 default=True,
 help_text=_(
 'Designates whether this user should be treated as active. '
 'Unselect this instead of deleting accounts.'
),
)
 date_joined = models.DateTimeField(_('date joined'), default=timezone.now)

 objects = UserManager()

 EMAIL_FIELD = 'email'
 USERNAME_FIELD = 'username'
 REQUIRED_FIELDS = ['email']

 class Meta:
 verbose_name = _('user')
 verbose_name_plural = _('users')
 abstract = True

 def clean(self):
 super().clean()
 self.email = self.__class__.objects.normalize_email(self.email)

 def get_full_name(self):
 """
 Return the first_name plus the last_name, with a space in between.
 """
 full_name = '%s %s' % (self.first_name, self.last_name)
 return full_name.strip()

 def get_short_name(self):
 """Return the short name for the user."""
 return self.first_name

 def email_user(self, subject, message, from_email=None, **kwargs):
 """Send an email to this user."""
 send_mail(subject, message, from_email, [self.email], **kwargs)

class User(AbstractUser):
 """
 Users within the Django authentication system are represented by this
 model.

 Username and password are required. Other fields are optional.
 """
 class Meta(AbstractUser.Meta):
 swappable = 'AUTH_USER_MODEL'

class AnonymousUser:
 id = None
 pk = None
 username = ''
 is_staff = False
 is_active = False
 is_superuser = False
 _groups = EmptyManager(Group)
 _user_permissions = EmptyManager(Permission)

 def __str__(self):
 return 'AnonymousUser'

 def __eq__(self, other):
 return isinstance(other, self.__class__)

 def __hash__(self):
 return 1 # instances always return the same hash value

 def save(self):
 raise NotImplementedError("Django doesn't provide a DB representation for AnonymousUser.")

 def delete(self):
 raise NotImplementedError("Django doesn't provide a DB representation for AnonymousUser.")

 def set_password(self, raw_password):
 raise NotImplementedError("Django doesn't provide a DB representation for AnonymousUser.")

 def check_password(self, raw_password):
 raise NotImplementedError("Django doesn't provide a DB representation for AnonymousUser.")

 @property
 def groups(self):
 return self._groups

 @property
 def user_permissions(self):
 return self._user_permissions

 def get_group_permissions(self, obj=None):
 return set()

 def get_all_permissions(self, obj=None):
 return _user_get_all_permissions(self, obj=obj)

 def has_perm(self, perm, obj=None):
 return _user_has_perm(self, perm, obj=obj)

 def has_perms(self, perm_list, obj=None):
 return all(self.has_perm(perm, obj) for perm in perm_list)

 def has_module_perms(self, module):
 return _user_has_module_perms(self, module)

 @property
 def is_anonymous(self):
 return True

 @property
 def is_authenticated(self):
 return False

 def get_username(self):
 return self.username

 django.db.models.base

 Source code for django.db.models.base

import copy
import inspect
import warnings
from functools import partialmethod
from itertools import chain

from django.apps import apps
from django.conf import settings
from django.core import checks
from django.core.exceptions import (
 NON_FIELD_ERRORS, FieldDoesNotExist, FieldError, MultipleObjectsReturned,
 ObjectDoesNotExist, ValidationError,
)
from django.db import (
 DEFAULT_DB_ALIAS, DJANGO_VERSION_PICKLE_KEY, DatabaseError, connection,
 connections, router, transaction,
)
from django.db.models.constants import LOOKUP_SEP
from django.db.models.deletion import CASCADE, Collector
from django.db.models.fields.related import (
 ForeignObjectRel, OneToOneField, lazy_related_operation, resolve_relation,
)
from django.db.models.manager import Manager
from django.db.models.options import Options
from django.db.models.query import Q
from django.db.models.signals import (
 class_prepared, post_init, post_save, pre_init, pre_save,
)
from django.db.models.utils import make_model_tuple
from django.utils.encoding import force_text
from django.utils.text import capfirst, get_text_list
from django.utils.translation import gettext_lazy as _
from django.utils.version import get_version

class Deferred:
 def __repr__(self):
 return '<Deferred field>'

 def __str__(self):
 return '<Deferred field>'

DEFERRED = Deferred()

def subclass_exception(name, bases, module, attached_to):
 """
 Create exception subclass. Used by ModelBase below.

 The exception is created in a way that allows it to be pickled, assuming
 that the returned exception class will be added as an attribute to the
 'attached_to' class.
 """
 return type(name, bases, {
 '__module__': module,
 '__qualname__': '%s.%s' % (attached_to.__qualname__, name),
 })

class ModelBase(type):
 """Metaclass for all models."""
 def __new__(cls, name, bases, attrs, **kwargs):
 super_new = super().__new__

 # Also ensure initialization is only performed for subclasses of Model
 # (excluding Model class itself).
 parents = [b for b in bases if isinstance(b, ModelBase)]
 if not parents:
 return super_new(cls, name, bases, attrs)

 # Create the class.
 module = attrs.pop('__module__')
 new_attrs = {'__module__': module}
 classcell = attrs.pop('__classcell__', None)
 if classcell is not None:
 new_attrs['__classcell__'] = classcell
 new_class = super_new(cls, name, bases, new_attrs, **kwargs)
 attr_meta = attrs.pop('Meta', None)
 abstract = getattr(attr_meta, 'abstract', False)
 meta = attr_meta or getattr(new_class, 'Meta', None)
 base_meta = getattr(new_class, '_meta', None)

 app_label = None

 # Look for an application configuration to attach the model to.
 app_config = apps.get_containing_app_config(module)

 if getattr(meta, 'app_label', None) is None:
 if app_config is None:
 if not abstract:
 raise RuntimeError(
 "Model class %s.%s doesn't declare an explicit "
 "app_label and isn't in an application in "
 "INSTALLED_APPS." % (module, name)
)

 else:
 app_label = app_config.label

 new_class.add_to_class('_meta', Options(meta, app_label))
 if not abstract:
 new_class.add_to_class(
 'DoesNotExist',
 subclass_exception(
 'DoesNotExist',
 tuple(
 x.DoesNotExist for x in parents if hasattr(x, '_meta') and not x._meta.abstract
) or (ObjectDoesNotExist,),
 module,
 attached_to=new_class))
 new_class.add_to_class(
 'MultipleObjectsReturned',
 subclass_exception(
 'MultipleObjectsReturned',
 tuple(
 x.MultipleObjectsReturned for x in parents if hasattr(x, '_meta') and not x._meta.abstract
) or (MultipleObjectsReturned,),
 module,
 attached_to=new_class))
 if base_meta and not base_meta.abstract:
 # Non-abstract child classes inherit some attributes from their
 # non-abstract parent (unless an ABC comes before it in the
 # method resolution order).
 if not hasattr(meta, 'ordering'):
 new_class._meta.ordering = base_meta.ordering
 if not hasattr(meta, 'get_latest_by'):
 new_class._meta.get_latest_by = base_meta.get_latest_by

 is_proxy = new_class._meta.proxy

 # If the model is a proxy, ensure that the base class
 # hasn't been swapped out.
 if is_proxy and base_meta and base_meta.swapped:
 raise TypeError("%s cannot proxy the swapped model '%s'." % (name, base_meta.swapped))

 # Add all attributes to the class.
 for obj_name, obj in attrs.items():
 new_class.add_to_class(obj_name, obj)

 # All the fields of any type declared on this model
 new_fields = chain(
 new_class._meta.local_fields,
 new_class._meta.local_many_to_many,
 new_class._meta.private_fields
)
 field_names = {f.name for f in new_fields}

 # Basic setup for proxy models.
 if is_proxy:
 base = None
 for parent in [kls for kls in parents if hasattr(kls, '_meta')]:
 if parent._meta.abstract:
 if parent._meta.fields:
 raise TypeError(
 "Abstract base class containing model fields not "
 "permitted for proxy model '%s'." % name
)
 else:
 continue
 if base is None:
 base = parent
 elif parent._meta.concrete_model is not base._meta.concrete_model:
 raise TypeError("Proxy model '%s' has more than one non-abstract model base class." % name)
 if base is None:
 raise TypeError("Proxy model '%s' has no non-abstract model base class." % name)
 new_class._meta.setup_proxy(base)
 new_class._meta.concrete_model = base._meta.concrete_model
 else:
 new_class._meta.concrete_model = new_class

 # Collect the parent links for multi-table inheritance.
 parent_links = {}
 for base in reversed([new_class] + parents):
 # Conceptually equivalent to `if base is Model`.
 if not hasattr(base, '_meta'):
 continue
 # Skip concrete parent classes.
 if base != new_class and not base._meta.abstract:
 continue
 # Locate OneToOneField instances.
 for field in base._meta.local_fields:
 if isinstance(field, OneToOneField):
 related = resolve_relation(new_class, field.remote_field.model)
 parent_links[make_model_tuple(related)] = field

 # Track fields inherited from base models.
 inherited_attributes = set()
 # Do the appropriate setup for any model parents.
 for base in new_class.mro():
 if base not in parents or not hasattr(base, '_meta'):
 # Things without _meta aren't functional models, so they're
 # uninteresting parents.
 inherited_attributes.update(base.__dict__)
 continue

 parent_fields = base._meta.local_fields + base._meta.local_many_to_many
 if not base._meta.abstract:
 # Check for clashes between locally declared fields and those
 # on the base classes.
 for field in parent_fields:
 if field.name in field_names:
 raise FieldError(
 'Local field %r in class %r clashes with field of '
 'the same name from base class %r.' % (
 field.name,
 name,
 base.__name__,
)
)
 else:
 inherited_attributes.add(field.name)

 # Concrete classes...
 base = base._meta.concrete_model
 base_key = make_model_tuple(base)
 if base_key in parent_links:
 field = parent_links[base_key]
 elif not is_proxy:
 attr_name = '%s_ptr' % base._meta.model_name
 field = OneToOneField(
 base,
 on_delete=CASCADE,
 name=attr_name,
 auto_created=True,
 parent_link=True,
)

 if attr_name in field_names:
 raise FieldError(
 "Auto-generated field '%s' in class %r for "
 "parent_link to base class %r clashes with "
 "declared field of the same name." % (
 attr_name,
 name,
 base.__name__,
)
)

 # Only add the ptr field if it's not already present;
 # e.g. migrations will already have it specified
 if not hasattr(new_class, attr_name):
 new_class.add_to_class(attr_name, field)
 else:
 field = None
 new_class._meta.parents[base] = field
 else:
 base_parents = base._meta.parents.copy()

 # Add fields from abstract base class if it wasn't overridden.
 for field in parent_fields:
 if (field.name not in field_names and
 field.name not in new_class.__dict__ and
 field.name not in inherited_attributes):
 new_field = copy.deepcopy(field)
 new_class.add_to_class(field.name, new_field)
 # Replace parent links defined on this base by the new
 # field. It will be appropriately resolved if required.
 if field.one_to_one:
 for parent, parent_link in base_parents.items():
 if field == parent_link:
 base_parents[parent] = new_field

 # Pass any non-abstract parent classes onto child.
 new_class._meta.parents.update(base_parents)

 # Inherit private fields (like GenericForeignKey) from the parent
 # class
 for field in base._meta.private_fields:
 if field.name in field_names:
 if not base._meta.abstract:
 raise FieldError(
 'Local field %r in class %r clashes with field of '
 'the same name from base class %r.' % (
 field.name,
 name,
 base.__name__,
)
)
 else:
 field = copy.deepcopy(field)
 if not base._meta.abstract:
 field.mti_inherited = True
 new_class.add_to_class(field.name, field)

 # Copy indexes so that index names are unique when models extend an
 # abstract model.
 new_class._meta.indexes = [copy.deepcopy(idx) for idx in new_class._meta.indexes]

 if abstract:
 # Abstract base models can't be instantiated and don't appear in
 # the list of models for an app. We do the final setup for them a
 # little differently from normal models.
 attr_meta.abstract = False
 new_class.Meta = attr_meta
 return new_class

 new_class._prepare()
 new_class._meta.apps.register_model(new_class._meta.app_label, new_class)
 return new_class

 def add_to_class(cls, name, value):
 # We should call the contribute_to_class method only if it's bound
 if not inspect.isclass(value) and hasattr(value, 'contribute_to_class'):
 value.contribute_to_class(cls, name)
 else:
 setattr(cls, name, value)

 def _prepare(cls):
 """Create some methods once self._meta has been populated."""
 opts = cls._meta
 opts._prepare(cls)

 if opts.order_with_respect_to:
 cls.get_next_in_order = partialmethod(cls._get_next_or_previous_in_order, is_next=True)
 cls.get_previous_in_order = partialmethod(cls._get_next_or_previous_in_order, is_next=False)

 # Defer creating accessors on the foreign class until it has been
 # created and registered. If remote_field is None, we're ordering
 # with respect to a GenericForeignKey and don't know what the
 # foreign class is - we'll add those accessors later in
 # contribute_to_class().
 if opts.order_with_respect_to.remote_field:
 wrt = opts.order_with_respect_to
 remote = wrt.remote_field.model
 lazy_related_operation(make_foreign_order_accessors, cls, remote)

 # Give the class a docstring -- its definition.
 if cls.__doc__ is None:
 cls.__doc__ = "%s(%s)" % (cls.__name__, ", ".join(f.name for f in opts.fields))

 get_absolute_url_override = settings.ABSOLUTE_URL_OVERRIDES.get(opts.label_lower)
 if get_absolute_url_override:
 setattr(cls, 'get_absolute_url', get_absolute_url_override)

 if not opts.managers:
 if any(f.name == 'objects' for f in opts.fields):
 raise ValueError(
 "Model %s must specify a custom Manager, because it has a "
 "field named 'objects'." % cls.__name__
)
 manager = Manager()
 manager.auto_created = True
 cls.add_to_class('objects', manager)

 # Set the name of _meta.indexes. This can't be done in
 # Options.contribute_to_class() because fields haven't been added to
 # the model at that point.
 for index in cls._meta.indexes:
 if not index.name:
 index.set_name_with_model(cls)

 class_prepared.send(sender=cls)

 @property
 def _base_manager(cls):
 return cls._meta.base_manager

 @property
 def _default_manager(cls):
 return cls._meta.default_manager

class ModelStateFieldsCacheDescriptor:
 def __get__(self, instance, cls=None):
 if instance is None:
 return self
 res = instance.fields_cache = {}
 return res

class ModelState:
 """Store model instance state."""
 db = None
 # If true, uniqueness validation checks will consider this a new, unsaved
 # object. Necessary for correct validation of new instances of objects with
 # explicit (non-auto) PKs. This impacts validation only; it has no effect
 # on the actual save.
 adding = True
 fields_cache = ModelStateFieldsCacheDescriptor()

class Model(metaclass=ModelBase):

 def __init__(self, *args, **kwargs):
 # Alias some things as locals to avoid repeat global lookups
 cls = self.__class__
 opts = self._meta
 _setattr = setattr
 _DEFERRED = DEFERRED

 pre_init.send(sender=cls, args=args, kwargs=kwargs)

 # Set up the storage for instance state
 self._state = ModelState()

 # There is a rather weird disparity here; if kwargs, it's set, then args
 # overrides it. It should be one or the other; don't duplicate the work
 # The reason for the kwargs check is that standard iterator passes in by
 # args, and instantiation for iteration is 33% faster.
 if len(args) > len(opts.concrete_fields):
 # Daft, but matches old exception sans the err msg.
 raise IndexError("Number of args exceeds number of fields")

 if not kwargs:
 fields_iter = iter(opts.concrete_fields)
 # The ordering of the zip calls matter - zip throws StopIteration
 # when an iter throws it. So if the first iter throws it, the second
 # is *not* consumed. We rely on this, so don't change the order
 # without changing the logic.
 for val, field in zip(args, fields_iter):
 if val is _DEFERRED:
 continue
 _setattr(self, field.attname, val)
 else:
 # Slower, kwargs-ready version.
 fields_iter = iter(opts.fields)
 for val, field in zip(args, fields_iter):
 if val is _DEFERRED:
 continue
 _setattr(self, field.attname, val)
 kwargs.pop(field.name, None)

 # Now we're left with the unprocessed fields that *must* come from
 # keywords, or default.

 for field in fields_iter:
 is_related_object = False
 # Virtual field
 if field.attname not in kwargs and field.column is None:
 continue
 if kwargs:
 if isinstance(field.remote_field, ForeignObjectRel):
 try:
 # Assume object instance was passed in.
 rel_obj = kwargs.pop(field.name)
 is_related_object = True
 except KeyError:
 try:
 # Object instance wasn't passed in -- must be an ID.
 val = kwargs.pop(field.attname)
 except KeyError:
 val = field.get_default()
 else:
 # Object instance was passed in. Special case: You can
 # pass in "None" for related objects if it's allowed.
 if rel_obj is None and field.null:
 val = None
 else:
 try:
 val = kwargs.pop(field.attname)
 except KeyError:
 # This is done with an exception rather than the
 # default argument on pop because we don't want
 # get_default() to be evaluated, and then not used.
 # Refs #12057.
 val = field.get_default()
 else:
 val = field.get_default()

 if is_related_object:
 # If we are passed a related instance, set it using the
 # field.name instead of field.attname (e.g. "user" instead of
 # "user_id") so that the object gets properly cached (and type
 # checked) by the RelatedObjectDescriptor.
 if rel_obj is not _DEFERRED:
 _setattr(self, field.name, rel_obj)
 else:
 if val is not _DEFERRED:
 _setattr(self, field.attname, val)

 if kwargs:
 property_names = opts._property_names
 for prop in tuple(kwargs):
 try:
 # Any remaining kwargs must correspond to properties or
 # virtual fields.
 if prop in property_names or opts.get_field(prop):
 if kwargs[prop] is not _DEFERRED:
 _setattr(self, prop, kwargs[prop])
 del kwargs[prop]
 except (AttributeError, FieldDoesNotExist):
 pass
 for kwarg in kwargs:
 raise TypeError("'%s' is an invalid keyword argument for this function" % kwarg)
 super().__init__()
 post_init.send(sender=cls, instance=self)

 @classmethod
 def from_db(cls, db, field_names, values):
 if len(values) != len(cls._meta.concrete_fields):
 values_iter = iter(values)
 values = [
 next(values_iter) if f.attname in field_names else DEFERRED
 for f in cls._meta.concrete_fields
]
 new = cls(*values)
 new._state.adding = False
 new._state.db = db
 return new

 def __repr__(self):
 return '<%s: %s>' % (self.__class__.__name__, self)

 def __str__(self):
 return '%s object (%s)' % (self.__class__.__name__, self.pk)

 def __eq__(self, other):
 if not isinstance(other, Model):
 return False
 if self._meta.concrete_model != other._meta.concrete_model:
 return False
 my_pk = self.pk
 if my_pk is None:
 return self is other
 return my_pk == other.pk

 def __hash__(self):
 if self.pk is None:
 raise TypeError("Model instances without primary key value are unhashable")
 return hash(self.pk)

 def __reduce__(self):
 data = self.__getstate__()
 data[DJANGO_VERSION_PICKLE_KEY] = get_version()
 class_id = self._meta.app_label, self._meta.object_name
 return model_unpickle, (class_id,), data

 def __getstate__(self):
 """Hook to allow choosing the attributes to pickle."""
 return self.__dict__

 def __setstate__(self, state):
 msg = None
 pickled_version = state.get(DJANGO_VERSION_PICKLE_KEY)
 if pickled_version:
 current_version = get_version()
 if current_version != pickled_version:
 msg = (
 "Pickled model instance's Django version %s does not match "
 "the current version %s." % (pickled_version, current_version)
)
 else:
 msg = "Pickled model instance's Django version is not specified."

 if msg:
 warnings.warn(msg, RuntimeWarning, stacklevel=2)

 self.__dict__.update(state)

 def _get_pk_val(self, meta=None):
 meta = meta or self._meta
 return getattr(self, meta.pk.attname)

 def _set_pk_val(self, value):
 return setattr(self, self._meta.pk.attname, value)

 pk = property(_get_pk_val, _set_pk_val)

 def get_deferred_fields(self):
 """
 Return a set containing names of deferred fields for this instance.
 """
 return {
 f.attname for f in self._meta.concrete_fields
 if f.attname not in self.__dict__
 }

 def refresh_from_db(self, using=None, fields=None):
 """
 Reload field values from the database.

 By default, the reloading happens from the database this instance was
 loaded from, or by the read router if this instance wasn't loaded from
 any database. The using parameter will override the default.

 Fields can be used to specify which fields to reload. The fields
 should be an iterable of field attnames. If fields is None, then
 all non-deferred fields are reloaded.

 When accessing deferred fields of an instance, the deferred loading
 of the field will call this method.
 """
 if fields is not None:
 if not fields:
 return
 if any(LOOKUP_SEP in f for f in fields):
 raise ValueError(
 'Found "%s" in fields argument. Relations and transforms '
 'are not allowed in fields.' % LOOKUP_SEP)

 hints = {'instance': self}
 db_instance_qs = self.__class__._base_manager.db_manager(using, hints=hints).filter(pk=self.pk)

 # Use provided fields, if not set then reload all non-deferred fields.
 deferred_fields = self.get_deferred_fields()
 if fields is not None:
 fields = list(fields)
 db_instance_qs = db_instance_qs.only(*fields)
 elif deferred_fields:
 fields = [f.attname for f in self._meta.concrete_fields
 if f.attname not in deferred_fields]
 db_instance_qs = db_instance_qs.only(*fields)

 db_instance = db_instance_qs.get()
 non_loaded_fields = db_instance.get_deferred_fields()
 for field in self._meta.concrete_fields:
 if field.attname in non_loaded_fields:
 # This field wasn't refreshed - skip ahead.
 continue
 setattr(self, field.attname, getattr(db_instance, field.attname))
 # Clear cached foreign keys.
 if field.is_relation and field.is_cached(self):
 field.delete_cached_value(self)

 # Clear cached relations.
 for field in self._meta.related_objects:
 if field.is_cached(self):
 field.delete_cached_value(self)

 self._state.db = db_instance._state.db

 def serializable_value(self, field_name):
 """
 Return the value of the field name for this instance. If the field is
 a foreign key, return the id value instead of the object. If there's
 no Field object with this name on the model, return the model
 attribute's value.

 Used to serialize a field's value (in the serializer, or form output,
 for example). Normally, you would just access the attribute directly
 and not use this method.
 """
 try:
 field = self._meta.get_field(field_name)
 except FieldDoesNotExist:
 return getattr(self, field_name)
 return getattr(self, field.attname)

 def save(self, force_insert=False, force_update=False, using=None,
 update_fields=None):
 """
 Save the current instance. Override this in a subclass if you want to
 control the saving process.

 The 'force_insert' and 'force_update' parameters can be used to insist
 that the "save" must be an SQL insert or update (or equivalent for
 non-SQL backends), respectively. Normally, they should not be set.
 """
 # Ensure that a model instance without a PK hasn't been assigned to
 # a ForeignKey or OneToOneField on this model. If the field is
 # nullable, allowing the save() would result in silent data loss.
 for field in self._meta.concrete_fields:
 # If the related field isn't cached, then an instance hasn't
 # been assigned and there's no need to worry about this check.
 if field.is_relation and field.is_cached(self):
 obj = getattr(self, field.name, None)
 # A pk may have been assigned manually to a model instance not
 # saved to the database (or auto-generated in a case like
 # UUIDField), but we allow the save to proceed and rely on the
 # database to raise an IntegrityError if applicable. If
 # constraints aren't supported by the database, there's the
 # unavoidable risk of data corruption.
 if obj and obj.pk is None:
 # Remove the object from a related instance cache.
 if not field.remote_field.multiple:
 field.remote_field.delete_cached_value(obj)
 raise ValueError(
 "save() prohibited to prevent data loss due to "
 "unsaved related object '%s'." % field.name
)
 # If the relationship's pk/to_field was changed, clear the
 # cached relationship.
 if obj and getattr(obj, field.target_field.attname) != getattr(self, field.attname):
 field.delete_cached_value(self)

 using = using or router.db_for_write(self.__class__, instance=self)
 if force_insert and (force_update or update_fields):
 raise ValueError("Cannot force both insert and updating in model saving.")

 deferred_fields = self.get_deferred_fields()
 if update_fields is not None:
 # If update_fields is empty, skip the save. We do also check for
 # no-op saves later on for inheritance cases. This bailout is
 # still needed for skipping signal sending.
 if not update_fields:
 return

 update_fields = frozenset(update_fields)
 field_names = set()

 for field in self._meta.fields:
 if not field.primary_key:
 field_names.add(field.name)

 if field.name != field.attname:
 field_names.add(field.attname)

 non_model_fields = update_fields.difference(field_names)

 if non_model_fields:
 raise ValueError("The following fields do not exist in this "
 "model or are m2m fields: %s"
 % ', '.join(non_model_fields))

 # If saving to the same database, and this model is deferred, then
 # automatically do a "update_fields" save on the loaded fields.
 elif not force_insert and deferred_fields and using == self._state.db:
 field_names = set()
 for field in self._meta.concrete_fields:
 if not field.primary_key and not hasattr(field, 'through'):
 field_names.add(field.attname)
 loaded_fields = field_names.difference(deferred_fields)
 if loaded_fields:
 update_fields = frozenset(loaded_fields)

 self.save_base(using=using, force_insert=force_insert,
 force_update=force_update, update_fields=update_fields)
 save.alters_data = True

 def save_base(self, raw=False, force_insert=False,
 force_update=False, using=None, update_fields=None):
 """
 Handle the parts of saving which should be done only once per save,
 yet need to be done in raw saves, too. This includes some sanity
 checks and signal sending.

 The 'raw' argument is telling save_base not to save any parent
 models and not to do any changes to the values before save. This
 is used by fixture loading.
 """
 using = using or router.db_for_write(self.__class__, instance=self)
 assert not (force_insert and (force_update or update_fields))
 assert update_fields is None or update_fields
 cls = origin = self.__class__
 # Skip proxies, but keep the origin as the proxy model.
 if cls._meta.proxy:
 cls = cls._meta.concrete_model
 meta = cls._meta
 if not meta.auto_created:
 pre_save.send(
 sender=origin, instance=self, raw=raw, using=using,
 update_fields=update_fields,
)
 with transaction.atomic(using=using, savepoint=False):
 if not raw:
 self._save_parents(cls, using, update_fields)
 updated = self._save_table(raw, cls, force_insert, force_update, using, update_fields)
 # Store the database on which the object was saved
 self._state.db = using
 # Once saved, this is no longer a to-be-added instance.
 self._state.adding = False

 # Signal that the save is complete
 if not meta.auto_created:
 post_save.send(
 sender=origin, instance=self, created=(not updated),
 update_fields=update_fields, raw=raw, using=using,
)

 save_base.alters_data = True

 def _save_parents(self, cls, using, update_fields):
 """Save all the parents of cls using values from self."""
 meta = cls._meta
 for parent, field in meta.parents.items():
 # Make sure the link fields are synced between parent and self.
 if (field and getattr(self, parent._meta.pk.attname) is None and
 getattr(self, field.attname) is not None):
 setattr(self, parent._meta.pk.attname, getattr(self, field.attname))
 self._save_parents(cls=parent, using=using, update_fields=update_fields)
 self._save_table(cls=parent, using=using, update_fields=update_fields)
 # Set the parent's PK value to self.
 if field:
 setattr(self, field.attname, self._get_pk_val(parent._meta))
 # Since we didn't have an instance of the parent handy set
 # attname directly, bypassing the descriptor. Invalidate
 # the related object cache, in case it's been accidentally
 # populated. A fresh instance will be re-built from the
 # database if necessary.
 if field.is_cached(self):
 field.delete_cached_value(self)

 def _save_table(self, raw=False, cls=None, force_insert=False,
 force_update=False, using=None, update_fields=None):
 """
 Do the heavy-lifting involved in saving. Update or insert the data
 for a single table.
 """
 meta = cls._meta
 non_pks = [f for f in meta.local_concrete_fields if not f.primary_key]

 if update_fields:
 non_pks = [f for f in non_pks
 if f.name in update_fields or f.attname in update_fields]

 pk_val = self._get_pk_val(meta)
 if pk_val is None:
 pk_val = meta.pk.get_pk_value_on_save(self)
 setattr(self, meta.pk.attname, pk_val)
 pk_set = pk_val is not None
 if not pk_set and (force_update or update_fields):
 raise ValueError("Cannot force an update in save() with no primary key.")
 updated = False
 # If possible, try an UPDATE. If that doesn't update anything, do an INSERT.
 if pk_set and not force_insert:
 base_qs = cls._base_manager.using(using)
 values = [(f, None, (getattr(self, f.attname) if raw else f.pre_save(self, False)))
 for f in non_pks]
 forced_update = update_fields or force_update
 updated = self._do_update(base_qs, using, pk_val, values, update_fields,
 forced_update)
 if force_update and not updated:
 raise DatabaseError("Forced update did not affect any rows.")
 if update_fields and not updated:
 raise DatabaseError("Save with update_fields did not affect any rows.")
 if not updated:
 if meta.order_with_respect_to:
 # If this is a model with an order_with_respect_to
 # autopopulate the _order field
 field = meta.order_with_respect_to
 filter_args = field.get_filter_kwargs_for_object(self)
 order_value = cls._base_manager.using(using).filter(**filter_args).count()
 self._order = order_value

 fields = meta.local_concrete_fields
 if not pk_set:
 fields = [f for f in fields if f is not meta.auto_field]

 update_pk = meta.auto_field and not pk_set
 result = self._do_insert(cls._base_manager, using, fields, update_pk, raw)
 if update_pk:
 setattr(self, meta.pk.attname, result)
 return updated

 def _do_update(self, base_qs, using, pk_val, values, update_fields, forced_update):
 """
 Try to update the model. Return True if the model was updated (if an
 update query was done and a matching row was found in the DB).
 """
 filtered = base_qs.filter(pk=pk_val)
 if not values:
 # We can end up here when saving a model in inheritance chain where
 # update_fields doesn't target any field in current model. In that
 # case we just say the update succeeded. Another case ending up here
 # is a model with just PK - in that case check that the PK still
 # exists.
 return update_fields is not None or filtered.exists()
 if self._meta.select_on_save and not forced_update:
 return (
 filtered.exists() and
 # It may happen that the object is deleted from the DB right after
 # this check, causing the subsequent UPDATE to return zero matching
 # rows. The same result can occur in some rare cases when the
 # database returns zero despite the UPDATE being executed
 # successfully (a row is matched and updated). In order to
 # distinguish these two cases, the object's existence in the
 # database is again checked for if the UPDATE query returns 0.
 (filtered._update(values) > 0 or filtered.exists())
)
 return filtered._update(values) > 0

 def _do_insert(self, manager, using, fields, update_pk, raw):
 """
 Do an INSERT. If update_pk is defined then this method should return
 the new pk for the model.
 """
 return manager._insert([self], fields=fields, return_id=update_pk,
 using=using, raw=raw)

 def delete(self, using=None, keep_parents=False):
 using = using or router.db_for_write(self.__class__, instance=self)
 assert self.pk is not None, (
 "%s object can't be deleted because its %s attribute is set to None." %
 (self._meta.object_name, self._meta.pk.attname)
)

 collector = Collector(using=using)
 collector.collect([self], keep_parents=keep_parents)
 return collector.delete()

 delete.alters_data = True

 def _get_FIELD_display(self, field):
 value = getattr(self, field.attname)
 return force_text(dict(field.flatchoices).get(value, value), strings_only=True)

 def _get_next_or_previous_by_FIELD(self, field, is_next, **kwargs):
 if not self.pk:
 raise ValueError("get_next/get_previous cannot be used on unsaved objects.")
 op = 'gt' if is_next else 'lt'
 order = '' if is_next else '-'
 param = getattr(self, field.attname)
 q = Q(**{'%s__%s' % (field.name, op): param})
 q = q | Q(**{field.name: param, 'pk__%s' % op: self.pk})
 qs = self.__class__._default_manager.using(self._state.db).filter(**kwargs).filter(q).order_by(
 '%s%s' % (order, field.name), '%spk' % order
)
 try:
 return qs[0]
 except IndexError:
 raise self.DoesNotExist("%s matching query does not exist." % self.__class__._meta.object_name)

 def _get_next_or_previous_in_order(self, is_next):
 cachename = "__%s_order_cache" % is_next
 if not hasattr(self, cachename):
 op = 'gt' if is_next else 'lt'
 order = '_order' if is_next else '-_order'
 order_field = self._meta.order_with_respect_to
 filter_args = order_field.get_filter_kwargs_for_object(self)
 obj = self.__class__._default_manager.filter(**filter_args).filter(**{
 '_order__%s' % op: self.__class__._default_manager.values('_order').filter(**{
 self._meta.pk.name: self.pk
 })
 }).order_by(order)[:1].get()
 setattr(self, cachename, obj)
 return getattr(self, cachename)

 def prepare_database_save(self, field):
 if self.pk is None:
 raise ValueError("Unsaved model instance %r cannot be used in an ORM query." % self)
 return getattr(self, field.remote_field.get_related_field().attname)

 def clean(self):
 """
 Hook for doing any extra model-wide validation after clean() has been
 called on every field by self.clean_fields. Any ValidationError raised
 by this method will not be associated with a particular field; it will
 have a special-case association with the field defined by NON_FIELD_ERRORS.
 """
 pass

 def validate_unique(self, exclude=None):
 """
 Check unique constraints on the model and raise ValidationError if any
 failed.
 """
 unique_checks, date_checks = self._get_unique_checks(exclude=exclude)

 errors = self._perform_unique_checks(unique_checks)
 date_errors = self._perform_date_checks(date_checks)

 for k, v in date_errors.items():
 errors.setdefault(k, []).extend(v)

 if errors:
 raise ValidationError(errors)

 def _get_unique_checks(self, exclude=None):
 """
 Return a list of checks to perform. Since validate_unique() could be
 called from a ModelForm, some fields may have been excluded; we can't
 perform a unique check on a model that is missing fields involved
 in that check. Fields that did not validate should also be excluded,
 but they need to be passed in via the exclude argument.
 """
 if exclude is None:
 exclude = []
 unique_checks = []

 unique_togethers = [(self.__class__, self._meta.unique_together)]
 for parent_class in self._meta.get_parent_list():
 if parent_class._meta.unique_together:
 unique_togethers.append((parent_class, parent_class._meta.unique_together))

 for model_class, unique_together in unique_togethers:
 for check in unique_together:
 if not any(name in exclude for name in check):
 # Add the check if the field isn't excluded.
 unique_checks.append((model_class, tuple(check)))

 # These are checks for the unique_for_<date/year/month>.
 date_checks = []

 # Gather a list of checks for fields declared as unique and add them to
 # the list of checks.

 fields_with_class = [(self.__class__, self._meta.local_fields)]
 for parent_class in self._meta.get_parent_list():
 fields_with_class.append((parent_class, parent_class._meta.local_fields))

 for model_class, fields in fields_with_class:
 for f in fields:
 name = f.name
 if name in exclude:
 continue
 if f.unique:
 unique_checks.append((model_class, (name,)))
 if f.unique_for_date and f.unique_for_date not in exclude:
 date_checks.append((model_class, 'date', name, f.unique_for_date))
 if f.unique_for_year and f.unique_for_year not in exclude:
 date_checks.append((model_class, 'year', name, f.unique_for_year))
 if f.unique_for_month and f.unique_for_month not in exclude:
 date_checks.append((model_class, 'month', name, f.unique_for_month))
 return unique_checks, date_checks

 def _perform_unique_checks(self, unique_checks):
 errors = {}

 for model_class, unique_check in unique_checks:
 # Try to look up an existing object with the same values as this
 # object's values for all the unique field.

 lookup_kwargs = {}
 for field_name in unique_check:
 f = self._meta.get_field(field_name)
 lookup_value = getattr(self, f.attname)
 # TODO: Handle multiple backends with different feature flags.
 if (lookup_value is None or
 (lookup_value == '' and connection.features.interprets_empty_strings_as_nulls)):
 # no value, skip the lookup
 continue
 if f.primary_key and not self._state.adding:
 # no need to check for unique primary key when editing
 continue
 lookup_kwargs[str(field_name)] = lookup_value

 # some fields were skipped, no reason to do the check
 if len(unique_check) != len(lookup_kwargs):
 continue

 qs = model_class._default_manager.filter(**lookup_kwargs)

 # Exclude the current object from the query if we are editing an
 # instance (as opposed to creating a new one)
 # Note that we need to use the pk as defined by model_class, not
 # self.pk. These can be different fields because model inheritance
 # allows single model to have effectively multiple primary keys.
 # Refs #17615.
 model_class_pk = self._get_pk_val(model_class._meta)
 if not self._state.adding and model_class_pk is not None:
 qs = qs.exclude(pk=model_class_pk)
 if qs.exists():
 if len(unique_check) == 1:
 key = unique_check[0]
 else:
 key = NON_FIELD_ERRORS
 errors.setdefault(key, []).append(self.unique_error_message(model_class, unique_check))

 return errors

 def _perform_date_checks(self, date_checks):
 errors = {}
 for model_class, lookup_type, field, unique_for in date_checks:
 lookup_kwargs = {}
 # there's a ticket to add a date lookup, we can remove this special
 # case if that makes it's way in
 date = getattr(self, unique_for)
 if date is None:
 continue
 if lookup_type == 'date':
 lookup_kwargs['%s__day' % unique_for] = date.day
 lookup_kwargs['%s__month' % unique_for] = date.month
 lookup_kwargs['%s__year' % unique_for] = date.year
 else:
 lookup_kwargs['%s__%s' % (unique_for, lookup_type)] = getattr(date, lookup_type)
 lookup_kwargs[field] = getattr(self, field)

 qs = model_class._default_manager.filter(**lookup_kwargs)
 # Exclude the current object from the query if we are editing an
 # instance (as opposed to creating a new one)
 if not self._state.adding and self.pk is not None:
 qs = qs.exclude(pk=self.pk)

 if qs.exists():
 errors.setdefault(field, []).append(
 self.date_error_message(lookup_type, field, unique_for)
)
 return errors

 def date_error_message(self, lookup_type, field_name, unique_for):
 opts = self._meta
 field = opts.get_field(field_name)
 return ValidationError(
 message=field.error_messages['unique_for_date'],
 code='unique_for_date',
 params={
 'model': self,
 'model_name': capfirst(opts.verbose_name),
 'lookup_type': lookup_type,
 'field': field_name,
 'field_label': capfirst(field.verbose_name),
 'date_field': unique_for,
 'date_field_label': capfirst(opts.get_field(unique_for).verbose_name),
 }
)

 def unique_error_message(self, model_class, unique_check):
 opts = model_class._meta

 params = {
 'model': self,
 'model_class': model_class,
 'model_name': capfirst(opts.verbose_name),
 'unique_check': unique_check,
 }

 # A unique field
 if len(unique_check) == 1:
 field = opts.get_field(unique_check[0])
 params['field_label'] = capfirst(field.verbose_name)
 return ValidationError(
 message=field.error_messages['unique'],
 code='unique',
 params=params,
)

 # unique_together
 else:
 field_labels = [capfirst(opts.get_field(f).verbose_name) for f in unique_check]
 params['field_labels'] = get_text_list(field_labels, _('and'))
 return ValidationError(
 message=_("%(model_name)s with this %(field_labels)s already exists."),
 code='unique_together',
 params=params,
)

 def full_clean(self, exclude=None, validate_unique=True):
 """
 Call clean_fields(), clean(), and validate_unique() on the model.
 Raise a ValidationError for any errors that occur.
 """
 errors = {}
 if exclude is None:
 exclude = []
 else:
 exclude = list(exclude)

 try:
 self.clean_fields(exclude=exclude)
 except ValidationError as e:
 errors = e.update_error_dict(errors)

 # Form.clean() is run even if other validation fails, so do the
 # same with Model.clean() for consistency.
 try:
 self.clean()
 except ValidationError as e:
 errors = e.update_error_dict(errors)

 # Run unique checks, but only for fields that passed validation.
 if validate_unique:
 for name in errors:
 if name != NON_FIELD_ERRORS and name not in exclude:
 exclude.append(name)
 try:
 self.validate_unique(exclude=exclude)
 except ValidationError as e:
 errors = e.update_error_dict(errors)

 if errors:
 raise ValidationError(errors)

 def clean_fields(self, exclude=None):
 """
 Clean all fields and raise a ValidationError containing a dict
 of all validation errors if any occur.
 """
 if exclude is None:
 exclude = []

 errors = {}
 for f in self._meta.fields:
 if f.name in exclude:
 continue
 # Skip validation for empty fields with blank=True. The developer
 # is responsible for making sure they have a valid value.
 raw_value = getattr(self, f.attname)
 if f.blank and raw_value in f.empty_values:
 continue
 try:
 setattr(self, f.attname, f.clean(raw_value, self))
 except ValidationError as e:
 errors[f.name] = e.error_list

 if errors:
 raise ValidationError(errors)

 @classmethod
 def check(cls, **kwargs):
 errors = [*cls._check_swappable(), *cls._check_model(), *cls._check_managers(**kwargs)]
 if not cls._meta.swapped:
 errors += [
 *cls._check_fields(**kwargs),
 *cls._check_m2m_through_same_relationship(),
 *cls._check_long_column_names(),
]
 clash_errors = (
 *cls._check_id_field(),
 *cls._check_field_name_clashes(),
 *cls._check_model_name_db_lookup_clashes(),
 *cls._check_property_name_related_field_accessor_clashes(),
 *cls._check_single_primary_key(),
)
 errors.extend(clash_errors)
 # If there are field name clashes, hide consequent column name
 # clashes.
 if not clash_errors:
 errors.extend(cls._check_column_name_clashes())
 errors += [
 *cls._check_index_together(),
 *cls._check_unique_together(),
 *cls._check_indexes(),
 *cls._check_ordering(),
]

 return errors

 @classmethod
 def _check_swappable(cls):
 """Check if the swapped model exists."""
 errors = []
 if cls._meta.swapped:
 try:
 apps.get_model(cls._meta.swapped)
 except ValueError:
 errors.append(
 checks.Error(
 "'%s' is not of the form 'app_label.app_name'." % cls._meta.swappable,
 id='models.E001',
)
)
 except LookupError:
 app_label, model_name = cls._meta.swapped.split('.')
 errors.append(
 checks.Error(
 "'%s' references '%s.%s', which has not been "
 "installed, or is abstract." % (
 cls._meta.swappable, app_label, model_name
),
 id='models.E002',
)
)
 return errors

 @classmethod
 def _check_model(cls):
 errors = []
 if cls._meta.proxy:
 if cls._meta.local_fields or cls._meta.local_many_to_many:
 errors.append(
 checks.Error(
 "Proxy model '%s' contains model fields." % cls.__name__,
 id='models.E017',
)
)
 return errors

 @classmethod
 def _check_managers(cls, **kwargs):
 """Perform all manager checks."""
 errors = []
 for manager in cls._meta.managers:
 errors.extend(manager.check(**kwargs))
 return errors

 @classmethod
 def _check_fields(cls, **kwargs):
 """Perform all field checks."""
 errors = []
 for field in cls._meta.local_fields:
 errors.extend(field.check(**kwargs))
 for field in cls._meta.local_many_to_many:
 errors.extend(field.check(from_model=cls, **kwargs))
 return errors

 @classmethod
 def _check_m2m_through_same_relationship(cls):
 """ Check if no relationship model is used by more than one m2m field.
 """

 errors = []
 seen_intermediary_signatures = []

 fields = cls._meta.local_many_to_many

 # Skip when the target model wasn't found.
 fields = (f for f in fields if isinstance(f.remote_field.model, ModelBase))

 # Skip when the relationship model wasn't found.
 fields = (f for f in fields if isinstance(f.remote_field.through, ModelBase))

 for f in fields:
 signature = (f.remote_field.model, cls, f.remote_field.through)
 if signature in seen_intermediary_signatures:
 errors.append(
 checks.Error(
 "The model has two many-to-many relations through "
 "the intermediate model '%s'." % f.remote_field.through._meta.label,
 obj=cls,
 id='models.E003',
)
)
 else:
 seen_intermediary_signatures.append(signature)
 return errors

 @classmethod
 def _check_id_field(cls):
 """Check if `id` field is a primary key."""
 fields = [f for f in cls._meta.local_fields if f.name == 'id' and f != cls._meta.pk]
 # fields is empty or consists of the invalid "id" field
 if fields and not fields[0].primary_key and cls._meta.pk.name == 'id':
 return [
 checks.Error(
 "'id' can only be used as a field name if the field also "
 "sets 'primary_key=True'.",
 obj=cls,
 id='models.E004',
)
]
 else:
 return []

 @classmethod
 def _check_field_name_clashes(cls):
 """Forbid field shadowing in multi-table inheritance."""
 errors = []
 used_fields = {} # name or attname -> field

 # Check that multi-inheritance doesn't cause field name shadowing.
 for parent in cls._meta.get_parent_list():
 for f in parent._meta.local_fields:
 clash = used_fields.get(f.name) or used_fields.get(f.attname) or None
 if clash:
 errors.append(
 checks.Error(
 "The field '%s' from parent model "
 "'%s' clashes with the field '%s' "
 "from parent model '%s'." % (
 clash.name, clash.model._meta,
 f.name, f.model._meta
),
 obj=cls,
 id='models.E005',
)
)
 used_fields[f.name] = f
 used_fields[f.attname] = f

 # Check that fields defined in the model don't clash with fields from
 # parents, including auto-generated fields like multi-table inheritance
 # child accessors.
 for parent in cls._meta.get_parent_list():
 for f in parent._meta.get_fields():
 if f not in used_fields:
 used_fields[f.name] = f

 for f in cls._meta.local_fields:
 clash = used_fields.get(f.name) or used_fields.get(f.attname) or None
 # Note that we may detect clash between user-defined non-unique
 # field "id" and automatically added unique field "id", both
 # defined at the same model. This special case is considered in
 # _check_id_field and here we ignore it.
 id_conflict = f.name == "id" and clash and clash.name == "id" and clash.model == cls
 if clash and not id_conflict:
 errors.append(
 checks.Error(
 "The field '%s' clashes with the field '%s' "
 "from model '%s'." % (
 f.name, clash.name, clash.model._meta
),
 obj=f,
 id='models.E006',
)
)
 used_fields[f.name] = f
 used_fields[f.attname] = f

 return errors

 @classmethod
 def _check_column_name_clashes(cls):
 # Store a list of column names which have already been used by other fields.
 used_column_names = []
 errors = []

 for f in cls._meta.local_fields:
 _, column_name = f.get_attname_column()

 # Ensure the column name is not already in use.
 if column_name and column_name in used_column_names:
 errors.append(
 checks.Error(
 "Field '%s' has column name '%s' that is used by "
 "another field." % (f.name, column_name),
 hint="Specify a 'db_column' for the field.",
 obj=cls,
 id='models.E007'
)
)
 else:
 used_column_names.append(column_name)

 return errors

 @classmethod
 def _check_model_name_db_lookup_clashes(cls):
 errors = []
 model_name = cls.__name__
 if model_name.startswith('_') or model_name.endswith('_'):
 errors.append(
 checks.Error(
 "The model name '%s' cannot start or end with an underscore "
 "as it collides with the query lookup syntax." % model_name,
 obj=cls,
 id='models.E023'
)
)
 elif LOOKUP_SEP in model_name:
 errors.append(
 checks.Error(
 "The model name '%s' cannot contain double underscores as "
 "it collides with the query lookup syntax." % model_name,
 obj=cls,
 id='models.E024'
)
)
 return errors

 @classmethod
 def _check_property_name_related_field_accessor_clashes(cls):
 errors = []
 property_names = cls._meta._property_names
 related_field_accessors = (
 f.get_attname() for f in cls._meta._get_fields(reverse=False)
 if f.is_relation and f.related_model is not None
)
 for accessor in related_field_accessors:
 if accessor in property_names:
 errors.append(
 checks.Error(
 "The property '%s' clashes with a related field "
 "accessor." % accessor,
 obj=cls,
 id='models.E025',
)
)
 return errors

 @classmethod
 def _check_single_primary_key(cls):
 errors = []
 if sum(1 for f in cls._meta.local_fields if f.primary_key) > 1:
 errors.append(
 checks.Error(
 "The model cannot have more than one field with "
 "'primary_key=True'.",
 obj=cls,
 id='models.E026',
)
)
 return errors

 @classmethod
 def _check_index_together(cls):
 """Check the value of "index_together" option."""
 if not isinstance(cls._meta.index_together, (tuple, list)):
 return [
 checks.Error(
 "'index_together' must be a list or tuple.",
 obj=cls,
 id='models.E008',
)
]

 elif any(not isinstance(fields, (tuple, list)) for fields in cls._meta.index_together):
 return [
 checks.Error(
 "All 'index_together' elements must be lists or tuples.",
 obj=cls,
 id='models.E009',
)
]

 else:
 errors = []
 for fields in cls._meta.index_together:
 errors.extend(cls._check_local_fields(fields, "index_together"))
 return errors

 @classmethod
 def _check_unique_together(cls):
 """Check the value of "unique_together" option."""
 if not isinstance(cls._meta.unique_together, (tuple, list)):
 return [
 checks.Error(
 "'unique_together' must be a list or tuple.",
 obj=cls,
 id='models.E010',
)
]

 elif any(not isinstance(fields, (tuple, list)) for fields in cls._meta.unique_together):
 return [
 checks.Error(
 "All 'unique_together' elements must be lists or tuples.",
 obj=cls,
 id='models.E011',
)
]

 else:
 errors = []
 for fields in cls._meta.unique_together:
 errors.extend(cls._check_local_fields(fields, "unique_together"))
 return errors

 @classmethod
 def _check_indexes(cls):
 """Check the fields of indexes."""
 fields = [field for index in cls._meta.indexes for field, _ in index.fields_orders]
 return cls._check_local_fields(fields, 'indexes')

 @classmethod
 def _check_local_fields(cls, fields, option):
 from django.db import models

 # In order to avoid hitting the relation tree prematurely, we use our
 # own fields_map instead of using get_field()
 forward_fields_map = {
 field.name: field for field in cls._meta._get_fields(reverse=False)
 }

 errors = []
 for field_name in fields:
 try:
 field = forward_fields_map[field_name]
 except KeyError:
 errors.append(
 checks.Error(
 "'%s' refers to the nonexistent field '%s'." % (
 option, field_name,
),
 obj=cls,
 id='models.E012',
)
)
 else:
 if isinstance(field.remote_field, models.ManyToManyRel):
 errors.append(
 checks.Error(
 "'%s' refers to a ManyToManyField '%s', but "
 "ManyToManyFields are not permitted in '%s'." % (
 option, field_name, option,
),
 obj=cls,
 id='models.E013',
)
)
 elif field not in cls._meta.local_fields:
 errors.append(
 checks.Error(
 "'%s' refers to field '%s' which is not local to model '%s'."
 % (option, field_name, cls._meta.object_name),
 hint="This issue may be caused by multi-table inheritance.",
 obj=cls,
 id='models.E016',
)
)
 return errors

 @classmethod
 def _check_ordering(cls):
 """
 Check "ordering" option -- is it a list of strings and do all fields
 exist?
 """
 if cls._meta._ordering_clash:
 return [
 checks.Error(
 "'ordering' and 'order_with_respect_to' cannot be used together.",
 obj=cls,
 id='models.E021',
),
]

 if cls._meta.order_with_respect_to or not cls._meta.ordering:
 return []

 if not isinstance(cls._meta.ordering, (list, tuple)):
 return [
 checks.Error(
 "'ordering' must be a tuple or list (even if you want to order by only one field).",
 obj=cls,
 id='models.E014',
)
]

 errors = []
 fields = cls._meta.ordering

 # Skip expressions and '?' fields.
 fields = (f for f in fields if isinstance(f, str) and f != '?')

 # Convert "-field" to "field".
 fields = ((f[1:] if f.startswith('-') else f) for f in fields)

 # Skip ordering in the format field1__field2 (FIXME: checking
 # this format would be nice, but it's a little fiddly).
 fields = (f for f in fields if LOOKUP_SEP not in f)

 # Skip ordering on pk. This is always a valid order_by field
 # but is an alias and therefore won't be found by opts.get_field.
 fields = {f for f in fields if f != 'pk'}

 # Check for invalid or nonexistent fields in ordering.
 invalid_fields = []

 # Any field name that is not present in field_names does not exist.
 # Also, ordering by m2m fields is not allowed.
 opts = cls._meta
 valid_fields = set(chain.from_iterable(
 (f.name, f.attname) if not (f.auto_created and not f.concrete) else (f.field.related_query_name(),)
 for f in chain(opts.fields, opts.related_objects)
))

 invalid_fields.extend(fields - valid_fields)

 for invalid_field in invalid_fields:
 errors.append(
 checks.Error(
 "'ordering' refers to the nonexistent field '%s'." % invalid_field,
 obj=cls,
 id='models.E015',
)
)
 return errors

 @classmethod
 def _check_long_column_names(cls):
 """
 Check that any auto-generated column names are shorter than the limits
 for each database in which the model will be created.
 """
 errors = []
 allowed_len = None
 db_alias = None

 # Find the minimum max allowed length among all specified db_aliases.
 for db in settings.DATABASES:
 # skip databases where the model won't be created
 if not router.allow_migrate_model(db, cls):
 continue
 connection = connections[db]
 max_name_length = connection.ops.max_name_length()
 if max_name_length is None or connection.features.truncates_names:
 continue
 else:
 if allowed_len is None:
 allowed_len = max_name_length
 db_alias = db
 elif max_name_length < allowed_len:
 allowed_len = max_name_length
 db_alias = db

 if allowed_len is None:
 return errors

 for f in cls._meta.local_fields:
 _, column_name = f.get_attname_column()

 # Check if auto-generated name for the field is too long
 # for the database.
 if f.db_column is None and column_name is not None and len(column_name) > allowed_len:
 errors.append(
 checks.Error(
 'Autogenerated column name too long for field "%s". '
 'Maximum length is "%s" for database "%s".'
 % (column_name, allowed_len, db_alias),
 hint="Set the column name manually using 'db_column'.",
 obj=cls,
 id='models.E018',
)
)

 for f in cls._meta.local_many_to_many:
 # Skip nonexistent models.
 if isinstance(f.remote_field.through, str):
 continue

 # Check if auto-generated name for the M2M field is too long
 # for the database.
 for m2m in f.remote_field.through._meta.local_fields:
 _, rel_name = m2m.get_attname_column()
 if m2m.db_column is None and rel_name is not None and len(rel_name) > allowed_len:
 errors.append(
 checks.Error(
 'Autogenerated column name too long for M2M field '
 '"%s". Maximum length is "%s" for database "%s".'
 % (rel_name, allowed_len, db_alias),
 hint=(
 "Use 'through' to create a separate model for "
 "M2M and then set column_name using 'db_column'."
),
 obj=cls,
 id='models.E019',
)
)

 return errors

##
HELPER FUNCTIONS (CURRIED MODEL METHODS)
##

ORDERING METHODS

def method_set_order(self, ordered_obj, id_list, using=None):
 if using is None:
 using = DEFAULT_DB_ALIAS
 order_wrt = ordered_obj._meta.order_with_respect_to
 filter_args = order_wrt.get_forward_related_filter(self)
 # FIXME: It would be nice if there was an "update many" version of update
 # for situations like this.
 with transaction.atomic(using=using, savepoint=False):
 for i, j in enumerate(id_list):
 ordered_obj.objects.filter(pk=j, **filter_args).update(_order=i)

def method_get_order(self, ordered_obj):
 order_wrt = ordered_obj._meta.order_with_respect_to
 filter_args = order_wrt.get_forward_related_filter(self)
 pk_name = ordered_obj._meta.pk.name
 return ordered_obj.objects.filter(**filter_args).values_list(pk_name, flat=True)

def make_foreign_order_accessors(model, related_model):
 setattr(
 related_model,
 'get_%s_order' % model.__name__.lower(),
 partialmethod(method_get_order, model)
)
 setattr(
 related_model,
 'set_%s_order' % model.__name__.lower(),
 partialmethod(method_set_order, model)
)

########
MISC
########

def model_unpickle(model_id):
 """Used to unpickle Model subclasses with deferred fields."""
 if isinstance(model_id, tuple):
 model = apps.get_model(*model_id)
 else:
 # Backwards compat - the model was cached directly in earlier versions.
 model = model_id
 return model.__new__(model)

model_unpickle.__safe_for_unpickle__ = True

 improved_user.admin

 Source code for improved_user.admin

"""Admin Configuration for Improved User"""
from django.contrib.auth.admin import UserAdmin as BaseUserAdmin
from django.utils.translation import ugettext_lazy as _

from .forms import UserChangeForm, UserCreationForm

[docs]class UserAdmin(BaseUserAdmin):
 """Admin panel for Improved User, mimics Django's default"""

 fieldsets = (
 (None, {"fields": ("email", "password")}),
 (_("Personal info"), {"fields": ("full_name", "short_name")}),
 (
 _("Permissions"),
 {
 "fields": (
 "is_active",
 "is_staff",
 "is_superuser",
 "groups",
 "user_permissions",
),
 },
),
 (_("Important dates"), {"fields": ("last_login", "date_joined")}),
)
 add_fieldsets = (
 (
 None,
 {
 "classes": ("wide",),
 "fields": ("email", "short_name", "password1", "password2"),
 },
),
)
 form = UserChangeForm
 add_form = UserCreationForm
 list_display = ("email", "full_name", "short_name", "is_staff")
 search_fields = ("email", "full_name", "short_name")
 ordering = ("email",)

 improved_user.factories

 Source code for improved_user.factories

"""Factories to make testing with Improved User easier"""
from django.contrib.auth import get_user_model

try:
 from factory import Faker, PostGenerationMethodCall
 from factory.django import DjangoModelFactory
except (ImportError, ModuleNotFoundError): # pragma: no cover
 raise Exception(
 "Please install factory_boy to use Improved User's UserFactory.\n"
 'pip install factory_boy==2.9.2')

User = get_user_model() # pylint: disable=invalid-name

pylint: disable=too-few-public-methods
[docs]class UserFactory(DjangoModelFactory):
 """Factory Boy factory for Improved User

 Generates a user with a default password of ``password!``.
 The user is active, but is not staff or a superuser.
 Any value can be overridden by passing in a value, as shown below.

 .. code:: python

 UserFactory(
 password='mys3cr3tp4ssw0rd!',
 is_superuser=True,
)
 """
 class Meta:
 """Configuration Options"""
 model = User

 email = Faker('email')
 password = PostGenerationMethodCall('set_password', 'password!')
 full_name = Faker('name')
 short_name = Faker('first_name')
 is_active = True
 is_staff = False
 is_superuser = False

pylint: enable=too-few-public-methods

 improved_user.forms

 Source code for improved_user.forms

"""Forms for Creating and Updating Improved Users"""
from django import VERSION as DjangoVersion, forms
from django.contrib.auth import get_user_model
from django.contrib.auth.forms import ReadOnlyPasswordHashField
from django.core.exceptions import ValidationError
from django.utils.translation import ugettext as _

try:
 from django.contrib.auth import password_validation
except ImportError: # pragma: no cover
 class EmptyValidator:
 """
 Class to mimic password validator API

 Django 1.8 doesn't have password strength validation
 We therefore introduce a mimic into the namespace

 """
 def validate_password(self, password, instance):
 """Accept password and user model and do nothing"""

 # pylint: disable=no-self-use
 def password_validators_help_text_html(self):
 """
 Used by password1 field;
 implicitly return None, as all strings are valid passwords

 """
 # pylint: enable=no-self-use

 password_validation = EmptyValidator()

User = get_user_model() # pylint: disable=invalid-name

[docs]class AbstractUserCreationForm(forms.ModelForm):
 """
 A form that creates a user, with no privileges, from the given
 username and password.
 """
 error_messages = {
 'password_mismatch': _("The two password fields didn't match."),
 }

 # TODO: move this to field when Django 1.8 support dropped
 password_kwargs = {'strip': False} if DjangoVersion >= (1, 9) else {}

 password1 = forms.CharField(
 label=_('Password'),
 widget=forms.PasswordInput,
 help_text=password_validation.password_validators_help_text_html(),
 **password_kwargs # noqa: C815
)
 password2 = forms.CharField(
 label=_('Password confirmation'),
 widget=forms.PasswordInput,
 help_text=_('Enter the same password as above, for verification.'),
 **password_kwargs # noqa: C815
)

[docs] def clean_password2(self):
 """
 Check wether password 1 and password 2 are equivalent

 While ideally this would be done in clean, there is a chance a
 superclass could declare clean and forget to call super. We
 therefore opt to run this password mismatch check in password2
 clean, but to show the error above password1 (as we are unsure
 whether password 1 or password 2 contains the typo, and putting
 it above password 2 may lead some users to believe the typo is
 in just one).

 """
 password1 = self.cleaned_data.get('password1')
 password2 = self.cleaned_data.get('password2')
 if password1 and password2 and password1 != password2:
 self.add_error(
 'password1',
 forms.ValidationError(
 self.error_messages['password_mismatch'],
 code='password_mismatch',
))
 return password2

[docs] def _post_clean(self):
 """Run password validaton after clean methods

 When clean methods are run, the user instance does not yet
 exist. To properly compare model values agains the password (in
 the UserAttributeSimilarityValidator), we wait until we have an
 instance to compare against.

 https://code.djangoproject.com/ticket/28127
 https://github.com/django/django/pull/8408

 Has no effect in Django prior to 1.9
 May become unnecessary in Django 2.0 (if this superclass changes)

 """
 super()._post_clean() # updates self.instance with form data
 password = self.cleaned_data.get('password1')
 if password:
 try:
 password_validation.validate_password(password, self.instance)
 except ValidationError as error:
 self.add_error('password1', error)

[docs] def save(self, commit=True):
 """Save the user; use password hasher to set password"""
 user = super(AbstractUserCreationForm, self).save(commit=False)
 user.set_password(self.cleaned_data['password1'])
 if commit:
 user.save()
 return user

[docs]class UserCreationForm(AbstractUserCreationForm):
 """
 A concrete implementation of AbstractUserCreationForm that uses an
 e-mail address as a user's identifier.
 """
 # TODO: when Py3.4 dropped, replace comprehension below with:
 # error_messages = {
 # **AbstractUserCreationForm.error_messages,
 # 'duplicate_email': _('A user with that email already exists.'),
 # }
 error_messages = {
 k: v
 for d in [
 AbstractUserCreationForm.error_messages,
 {'duplicate_email': _('A user with that email already exists.')}]
 for k, v in d.items()
 }

 class Meta:
 model = User
 fields = ('email', 'full_name', 'short_name')

[docs] def clean_email(self):
 """Clean email; set nice error message

 Since User.email is unique, this check is redundant,
 but it sets a nicer error message than the ORM. See #13147.

 https://code.djangoproject.com/ticket/13147
 """
 email = self.cleaned_data['email']
 try:
 # https://docs.djangoproject.com/en/stable/topics/db/managers/#default-managers
 # pylint: disable=protected-access
 User._default_manager.get(email=email)
 # pylint: enable=protected-access
 except User.DoesNotExist:
 return email
 raise forms.ValidationError(
 self.error_messages['duplicate_email'],
 code='duplicate_email',
)

[docs]class AbstractUserChangeForm(forms.ModelForm):
 """Base form update User, but not their password"""
 password = ReadOnlyPasswordHashField(
 label=_('Password'),
 help_text=_(
 'Raw passwords are not stored, so there is no way to see this '
 "user's password, but you can change the password using "
 'this form.'),
)

 rel_password_url = None

 def __init__(self, *args, **kwargs):
 """Initialize form; optimize user permission queryset"""
 super(AbstractUserChangeForm, self).__init__(*args, **kwargs)
 self.fields['password'].help_text = (
 self.fields['password'].help_text.format(
 self.get_local_password_path()))
 permission_field = self.fields.get('user_permissions', None)
 if permission_field is not None:
 # pre-load content types associated with permissions
 permission_field.queryset = (
 permission_field.queryset.select_related('content_type'))

[docs] def get_local_password_path(self):
 """Method to return relative path to password form

 Will return rel_password_url attribute on form
 or else '../password/'. If subclasses cannot simply replace
 rel_password_url, then they can override this method instead of
 __init__.

 """
 if (hasattr(self, 'rel_password_url')
 and self.rel_password_url is not None):
 return self.rel_password_url
 if DjangoVersion < (1, 9):
 return './password/'
 return '../password/'

[docs] def clean_password(self):
 """Change user info; not the password

 We seek to change the user, but not the password.
 Regardless of what the user provides, return the initial value.
 This is done here, rather than on the field, because the
 field does not have access to the initial value
 """
 return self.initial['password']

[docs]class UserChangeForm(AbstractUserChangeForm):
 """Form to update user, but not their password"""
 class Meta:
 model = User
 fields = '__all__'

 improved_user.managers

 Source code for improved_user.managers

"""User Manager used by Improved User; may be extended"""
from django.contrib.auth.models import BaseUserManager

[docs]class UserManager(BaseUserManager):
 """Manager for Users; overrides create commands for new fields

 Meant to be interacted with via the user model.

 .. code:: python

 User.objects # the UserManager
 User.objects.all() # has normal Manager/UserManager methods
 User.objects.create_user # overrides methods for Improved User

 Set to :attr:`~django.db.models.Model.objects` by
 :attr:`~improved_user.models.AbstractUser`
 """

 def _create_user(
 self, email, password, is_staff, is_superuser, **extra_fields):
 """Helper method to save a User with improved user fields"""
 if not email:
 raise ValueError('An email address must be provided.')
 if 'username' in extra_fields:
 raise ValueError(
 'The Improved User model does not have a username; '
 'it uses only email')
 user = self.model(
 email=self.normalize_email(email),
 is_staff=is_staff, is_superuser=is_superuser,
 **extra_fields)
 user.set_password(password)
 user.save(using=self._db)
 return user

[docs] def create_user(self, email=None, password=None, **extra_fields):
 """Save new User with email and password"""
 extra_fields.setdefault('is_staff', False)
 extra_fields.setdefault('is_superuser', False)
 return self._create_user(email, password, **extra_fields)

[docs] def create_superuser(self, email, password, **extra_fields):
 """Save new User with is_staff and is_superuser set to True"""
 extra_fields.setdefault('is_staff', True)
 extra_fields.setdefault('is_superuser', True)
 if extra_fields.get('is_staff') is not True:
 raise ValueError('Superuser must have is_staff=True.')
 if extra_fields.get('is_superuser') is not True:
 raise ValueError('Superuser must have is_superuser=True.')
 return self._create_user(email, password, **extra_fields)

 improved_user.model_mixins

 Source code for improved_user.model_mixins

"""Mix-in Classes intended for use with Django Models"""
from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin
from django.core.mail import send_mail
from django.db import models
from django.utils import timezone
from django.utils.translation import ugettext_lazy as _

from .managers import UserManager

[docs]class DjangoIntegrationMixin(models.Model):
 """Mixin provides fields for Django integration to work correctly

 Provides permissions for Django Admin integration, as well as date
 field used by authentication code.
 """
 is_staff = models.BooleanField(
 _('staff status'),
 default=False,
 help_text=_(
 'Designates whether the user can log into the admin site.'))
 is_active = models.BooleanField(
 _('active'),
 default=True,
 help_text=_(
 'Designates whether this user should be treated as '
 'active. Unselect this instead of deleting accounts.'))
 date_joined = models.DateTimeField(_('date joined'), default=timezone.now)

 class Meta:
 abstract = True

[docs]class FullNameMixin(models.Model):
 """A mixin to provide an optional full name field"""
 full_name = models.CharField(_('full name'), max_length=200, blank=True)

 class Meta:
 abstract = True

[docs] def get_full_name(self):
 """Returns the full name of the user."""
 return self.full_name

[docs]class ShortNameMixin(models.Model):
 """A mixin to provide an optional short name field"""
 short_name = models.CharField(_('short name'), max_length=50, blank=True)

 class Meta:
 abstract = True

[docs] def get_short_name(self):
 """Returns the short name for the user."""
 return self.short_name

[docs]class EmailAuthMixin(models.Model):
 """A mixin to use email as the username"""

 email = models.EmailField(_('email address'), max_length=254, unique=True)

 class Meta:
 abstract = True

 EMAIL_FIELD = 'email'
 USERNAME_FIELD = 'email'

[docs] def clean(self):
 """Override default clean method to normalize email.

 Call :code:`super().clean()` if overriding.

 """
 super().clean()
 self.email = self.__class__.objects.normalize_email(self.email)

[docs] def email_user(self, subject, message, from_email=None, **kwargs):
 """Sends an email to this User."""
 send_mail(subject, message, from_email, [self.email], **kwargs)

pylint: disable=too-many-ancestors
[docs]class AbstractUser(
 DjangoIntegrationMixin, FullNameMixin, ShortNameMixin, EmailAuthMixin,
 PermissionsMixin, AbstractBaseUser):
 """
 An abstract base class meant to be inherited (do not instantiate
 this). The class provides a fully featured User model with
 admin-compliant permissions. Differs from Django's
 :class:`~django.contrib.auth.models.AbstractUser`:

 1. Login occurs with an email and password instead of username.
 2. Provides short_name and full_name instead of first_name and
 last_name.

 All fields other than email and password are optional.

 Sets :attr:`~django.db.models.Model.objects` to
 :class:`~improved_user.managers.UserManager`.

 Documentation about Django's
 :class:`~django.contrib.auth.models.AbstractBaseUser` may be helpful
 in understanding this class.
 """
 objects = UserManager()

 # misnomer; fields Dj prompts for when user calls createsuperuser
 # https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.REQUIRED_FIELDS
 REQUIRED_FIELDS = ['full_name', 'short_name']

 class Meta:
 abstract = True
 verbose_name = _('user')
 verbose_name_plural = _('users')

 improved_user.models

 Source code for improved_user.models

"""The Improved User Model

Mixin classes used to create this class may be found in mixins.py

The UserManager is found in managers.py

"""
from .model_mixins import AbstractUser

pylint: disable=too-many-ancestors
[docs]class User(AbstractUser):
 """The Improved User Model is intended to be used out-of-the-box.

 Do **not** import this model directly: use
 :py:func:`~django.contrib.auth.get_user_model`.
 """

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Documentation for Django Improved User

 		
 Quickstart: Using Improved User

 		
 Installation

 		
 Configuration and Usage

 		
 Quickstart: Contributing

 		
 Project Rationale

 		
 Select a Configuration Method for Improved User

 		
 Extension Method

 		
 Integration Method

 		
 Replacement Method

 		
 Warning about Email Case-Sensitivity

 		
 How To: Integrate Improved User Directly

 		
 How To: Create a Custom User using Mixins

 		
 How To: Use Improved User in Data Migrations

 		
 How To: Use the Django Admin with Improved User

 		
 How to Contribute

 		
 Code of Conduct

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Write (or Request) Documentation

 		
 Your First Contribution

 		
 Your First Code Contribution

 		
 Your First Documentation Contribution

 		
 Package Reference

 		
 Overview

 		
 Reference Documents

 		
 Improved User Model

 		
 Managers

 		
 Mix-in Model Classes

 		
 Forms

 		
 Test Factories

 		
 Django Admin Panel

 		
 History

 		
 Next Release

 		
 1.0.1 (2020-02-16)

 		
 1.0.0 (2018-07-28)

 		
 0.5.3 (2017-08-29)

 		
 0.5.2 (2017-08-27)

 		
 0.5.1 (2017-08-27)

 		
 0.5.0 (2017-08-26)

 		
 0.4.0 (2017-08-14)

 		
