

Documentation for Django Improved User

Welcome! Below you will find the table of contents for Improved User.

If you’re in a rush, head over to Quickstart: Using Improved User.

If you’re new and want to see what your options are, please read
Select a Configuration Method for Improved User.

Contents:

	Quickstart: Using Improved User
	Installation

	Configuration and Usage

	Quickstart: Contributing

	Project Rationale

	Select a Configuration Method for Improved User
	Extension Method

	Integration Method

	Replacement Method

	Warning about Email Case-Sensitivity

	How To: Integrate Improved User Directly

	How To: Create a Custom User using Mixins

	How To: Use Improved User in Data Migrations

	How To: Use the Django Admin with Improved User

	How to Contribute
	Code of Conduct

	Types of Contributions
	Report Bugs

	Fix Bugs

	Write (or Request) Documentation

	Your First Contribution
	Your First Code Contribution

	Your First Documentation Contribution

	Package Reference
	Overview

	Reference Documents
	Improved User Model

	Managers

	Mix-in Model Classes

	Forms

	Test Factories

	Django Admin Panel

	History
	Next Release

	2.0.0 (Forthcoming)

	1.0.1 (2020-02-16)

	1.0.0 (2018-07-28)

	0.5.3 (2017-08-29)

	0.5.2 (2017-08-27)

	0.5.1 (2017-08-27)

	0.5.0 (2017-08-26)

	0.4.0 (2017-08-14)

	0.3.0 (2017-08-10)

	0.2.0 (2017-07-30)

	0.1.1 (2017-06-28)

	0.1.0 (2017-06-28)

	0.0.1 (2016-10-26)

Indices and tables

	Index

	Module Index

	Search Page

Quickstart: Using Improved User

This document provides a quick tutorial for the recommended way to setup
Improved User.

See Select a Configuration Method for Improved User for an overview of options and
tradeoffs.

	Installation

	Configuration and Usage

Installation

In a Terminal, use pip to install the package from PyPI [https://pypi.org/project/django-improved-user/].
To use the UserFactory provided
by the package to allow for testing with factory-boy [https://github.com/FactoryBoy/factory_boy], include it
in the installation.

$ pip install django-improved-user[factory]

If factory-boy [https://github.com/FactoryBoy/factory_boy] is unnecessary, it can be omitted by installing normally.

$ pip install django-improved-user

Configuration and Usage

	In a Django project, create a new app. For the purposes of this
documentation, we will assume the name of your new app is
user_app, but you could name it whatever you wish.

$ python3 manage.py startapp user_app

	In your project’s settings, add user_app.apps.UserAppConfig to
INSTALLED_APPS (replace user_app and UserAppConfig
as necessary).

	In user_app/models.py, import Improved User’s
AbstractUser.

from improved_user.model_mixins import AbstractUser

	Create a new User model. If you omit comments, you may need
to add pass to the line below the class.

class User(AbstractUser):
 """A User model that extends the Improved User"""

Attention

If you add your own fields to the model, you may wish to modify
REQUIRED_FIELDS [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.REQUIRED_FIELDS].

	Define or replace AUTH_USER_MODEL [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTH_USER_MODEL] in your project settings
with the new model, as below (replace user_app with the name
of your own app).

AUTH_USER_MODEL='user_app.User'

Tip

Remember to use get_user_model() [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.get_user_model] to
get your new model. Don’t import it directly!

	While still in settings, change
UserAttributeSimilarityValidator to match correct
AbstractUser fields, as
shown below.

AUTH_PREFIX = 'django.contrib.auth.password_validation.'
AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': AUTH_PREFIX + 'UserAttributeSimilarityValidator',
 'OPTIONS': {
 'user_attributes': ('email', 'full_name', 'short_name')
 },
 },
 # include other password validators here
]

	You’re done! 🎉 Run migrations or go back to programming the rest
of your project.

Note

Improved user also comes with forms, test factories, and an admin
panel. Take a look at the Package Reference for more
information.

Quickstart: Contributing

First off, thanks for taking the time to contribute! ✨🎉

This document assumes that you have forked and cloned the repository to
work on the package locally. If you are unsure how to do this, please
see the How to Contribute documentation.

To test the package, start by installing it locally.

$ pip install -r requirements.txt
$ python setup.py develop

To run the test suite on a single version of Django (assuming you have a
version of Django installed), run the runtests.py script from the
root of the project.

$ python runtests.py

You can limit tests or pass paramaters as when using manage.py test.

$./runtests.py tests.test_basic -v 3

If you have all of the supported Python versions installed (Python 3.7,
3.8, 3.9, and 3.10), you may use tox to run all linters and test the
package with multiple versions of Python and Django.

$ tox

You may also limit tests to specific environments or test suites with
tox. For instance:

$ tox -e py36-django111-unit tests.test_basic
$ tox -e py36-django111-integration user_integration.tests.TestViews.test_home

Any change to the code should first be discussed in an issue.

For any changes, please create a new branch, make your changes, and open
a pull request on github agains the development branch. Refer to the
issue you are fixing or building. To make review of the PR easier,
please commit small, targeted changes. Multiple small commits with
clear messages make reviewing changes easier. Rebasing your
branch to help clean up your changes is encouraged. Please remember that
this is a volunteer-driven project; we will look at your PR as soon as
possible.

Project Rationale

While working together in late 2016, Russell Keith-Magee [https://cecinestpasun.com] and Andrew
Pinkham [http://andrewsforge.com]— original authors of the project—discussed the repetitive
nature of rebuilding a best-practices email-based User model in new
Django projects. The two were tired of redoing the same work, and
decided to open-source code based on what they’d learned previously.

Russell’s Red User, Blue User, MyUser, auth.User talk from DjangoCon
US 2013 and PyCon AU 2017 (video below) provides a breakdown of the
problems with Django’s existing approach to identity-handling, as well
as an introduction to using custom User models in Django.

 Select a Configuration Method for Improved User

Select a Configuration Method for Improved User

The goal of this package is to improve your project’s User model. To
that end, Improved User may be used in three different ways. You may:

	inherit AbstractUser
in your own User model (extension);

	use the supplied User model
directly (integration);

	create your own User model using the supplied model mix-in classes
(replacement).

Tip

It is generally considered a good idea to change the User
model as infrequently and as little as possible, given the
possibility of security problems. Creating a Profile
model—which has a foreign key to the User model—to store
your users’ information can help avoid changes to the User
model.

Extension Method

The extension method is the recommended method to use when configuring
Improved User. Instructions for this method are found in
Quickstart: Using Improved User. This method gives the developer the most control and
flexibility, at the cost of having slightly extra code. This method is
the least likely to cause you problems in the long run, as it grants you
control of the model fields and migrations for your User model,
and gives you the opportunity of entirely removing Improved User in the
future if you need to.

Integration Method

The integration option is the simplest, and uses the least code.
However, it is also the least flexible, as it assumes that you will
never change the structure of the User
model. While this method may work fine for many, the amount of work
required to deal with any potential future change is very high. In many
ways, it is the most similar to Django’s own
User [http://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User]: you gain all of the benefits
of the class directly, but forgo the ability to control or remove the
model in the future without serious work. You may refer to
How To: Integrate Improved User Directly to use this method.

Warning

It will always be possible to switch between the extension and
replacement methods, but is difficult to migrate to or from the
integration method.

Replacement Method

The replacement method comes with the same trade-offs as the extension
method, but should be used in the event any of the fields included in
the AbstractUser are not
desired. We recommend this method only to those very familiar with
Django. For more information, please refer to
How To: Create a Custom User using Mixins.

 Warning about Email Case-Sensitivity

Warning about Email Case-Sensitivity

RFC 5321 [https://tools.ietf.org/rfc/rfc5321.txt] states that the mailbox in mailbox@hostname of an
email format is case-sensitive. ANDREW@example.com and
andrew@example.com are therefore different email addresses (the
domain is case-insensitive).

Django’s EmailField [http://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.EmailField] follows the RFC, and so,
therefore, does Improved User.

Today, many email providers have made their email systems
case-insensitive. However, not all providers have done so. As such, if
we were to provide a custom case-insensitive EmailField, we may be
alienating your users without you even knowing!

What’s more, we follow the RFC because not doing so can cause obscure
security issues [https://www.schneier.com/blog/archives/2018/04/obscure_e-mail_.html].

When creating your project’s templates, we recommend reminding your
users that their emails may be case-sensitive, and that the username
on this site is definitely case-sensitive.

Even if email case-sensitivity becomes a problem on your site, we
recommend you continue to use case-sensitive email fields so that you
retain case-sensitive data. Instead, rely on case-insensitive selection
and filtering to find and authenticate users (lowercase database indexes
can make this quite fast). These decisions and code are outside the
scope of this project and we therefore do not provide any work on this
front.

 How To: Integrate Improved User Directly

How To: Integrate Improved User Directly

Warning

This configuration method is but one of three, and may not make the
most sense for your project. Please read
Select a Configuration Method for Improved User before continuing, or else follow
the instructions in Quickstart: Using Improved User.

In a new Django project, perform the following steps in the
settings.py file or base settings file.

	Add improved_user.apps.ImprovedUserConfig
to INSTALLED_APPS

	Define or replace AUTH_USER_MODEL with the new model, as
below.

AUTH_USER_MODEL='improved_user.User'

	Change UserAttributeSimilarityValidator to match correct
User fields, as shown below.

AUTH_PREFIX = 'django.contrib.auth.password_validation.'
AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': AUTH_PREFIX + 'UserAttributeSimilarityValidator',
 'OPTIONS': {
 'user_attributes': ('email', 'full_name', 'short_name')
 },
 },
 # include other password validators here
]

Note

Improved user also comes with forms, test factories, and an admin panel.
Take a look at the Package Reference for more information.

 How To: Create a Custom User using Mixins

How To: Create a Custom User using Mixins

Warning

This configuration method is but one of three, and may not make the
most sense for your project. Please read
Select a Configuration Method for Improved User before continuing, or else follow
the instructions in Quickstart: Using Improved User.

The User and
AbstractUser classes supplied by
the package are not always what you want. In some cases, they may supply
fields you do not need or wish for. This tutorial demonstrates how to
create User models using the provided mix-in classes,
effectively building the model from scratch.

In this tutorial, we will create a new custom User that has an email
field and password, but which does not feature either the short_name
or full_name fields.

Warning

Not supplying methods for names on the User model will cause
problems with Django’s Admin.

Tip

If you’re looking to extend the
User model, rather than replace
it as shown in this tutorial, use the following steps:

	inherit AbstractUser
(follow the instructions in Quickstart: Using Improved User to see how)

	add new fields as desired

	override
REQUIRED_FIELDS [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.REQUIRED_FIELDS]
if necessary (remembering to put 'short_name',
'full_name' in the list)

In an existing app, in the models.py file, we start by importing the
tools we need to build the model. We first import classes from Django.

from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin
from django.utils.translation import gettext_lazy as _

AbstractBaseUser [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser] and
PermissionsMixin [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.PermissionsMixin] will serve as a
base for the User (click the classes in this sentence to see Django’s
official documentation on the subject). We also import
gettext_lazy() [http://docs.djangoproject.com/en/stable/ref/utils/#django.utils.translation.gettext_lazy] to enable translation
of our strings.

We then import mix-in classes from Improved User.

from improved_user.managers import UserManager
from improved_user.model_mixins import DjangoIntegrationMixin, EmailAuthMixin

The DjangoIntegrationMixin class
provides fields that allow the model to integrate with Django’s default
Authentication Backend as well as a field to allow for integration with
Django’s Admin.

The EmailAuthMixin creates an
EmailField [http://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.EmailField] and sets the field to be used
as the username during the authentication process.

The UserManager is a custom model
manager that provides the
create_user() and
create_superuser() methods
used in Django.

Danger

Improved Users’ custom
UserManager is intended to work
with subclasses of EmailAuthMixin,
and will likely not work with your User subclass if you are using a
different field for your username. You will, in that case, need to
create your own UserManager. The source code for Improved Users’
UserManager as well as Django’s
BaseUserManager [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.BaseUserManager] and
UserManager [http://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.UserManager] would likely prove
helpful.

Note

If you wanted to create a User model with a field other than email
for username, you would set the
USERNAME_FIELD [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.USERNAME_FIELD] on
your User model to the name of the field that should serve as the
username. Please take a look at the source of
EmailAuthMixin for an example of
this.

With all our tools in place, we can now create a User model. We start by
creating a class that inherits all of the classes we have imported, and
then we tie the UserManager to the
new model.

class User(
 DjangoIntegrationMixin, EmailAuthMixin, PermissionsMixin, AbstractBaseUser
):
 """A user created using mix-ins from Django and improved-user

 Note that the lack of name methods will cause errors in the Admin
 """

For good measure, we can specify the name and verbose name of the model,
making sure to internationalize the strings. Our full and final
models.py file is shown below.

"""A User model created by django-improved-user mixins"""
from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin
from django.utils.translation import gettext_lazy as _

from improved_user.managers import UserManager
from improved_user.model_mixins import DjangoIntegrationMixin, EmailAuthMixin

class User(
 DjangoIntegrationMixin, EmailAuthMixin, PermissionsMixin, AbstractBaseUser
):
 """A user created using mix-ins from Django and improved-user

 Note that the lack of name methods will cause errors in the Admin
 """

 objects = UserManager()

 class Meta:
 verbose_name = _("user")
 verbose_name_plural = _("users")

Tip

Setting abstract = True in the Meta class would allow the
class above to be an AbstractUser model similar to
AbstractUser

For all of the classes you may use to create your own User
model, please see model_mixins.

 How To: Use Improved User in Data Migrations

How To: Use Improved User in Data Migrations

Creating users in data migrations [http://docs.djangoproject.com/en/stable/topics/migrations/#data-migrations] is
discouraged as doing so represents a potential security risk, as
passwords are stored in plaintext in the migration. However, doing so in
proof-of-concepts or in special cases may be necessary, and the steps
below will demonstrate how to create and remove new users in a Django
data migration.

The django-improved-user package intentionally disallows use of
UserManager in data migrations (we
forgo the use of model managers in migrations [http://docs.djangoproject.com/en/stable/topics/migrations/#using-managers-in-migrations]). The
create_user() and
create_superuser() methods
are thus both unavailable when using data migrations. Both of these
methods rely on User model methods
which are unavailable in Historical models [http://docs.djangoproject.com/en/stable/topics/migrations/#historical-models], so we could
not use them even if we wanted to (short of refactoring large parts of
code currently inherited by Django).

We therefore rely on the standard
Manager [http://docs.djangoproject.com/en/stable/topics/db/managers/#django.db.models.Manager], and supplement the
password creation behavior.

In an existing Django project, you will start by creating a new and
empty migration file. Replace APP_NAME in the command below with the
name of the app for which you wish to create a migration.

$ python manage.py makemigrations --empty --name=add_user APP_NAME

We start by importing the necessary tools

from django.conf import settings
from django.contrib.auth.hashers import make_password
from django.db import migrations

We will use RunPython [http://docs.djangoproject.com/en/stable/ref/migration-operations/#django.db.migrations.operations.RunPython] to
run our code. RunPython [http://docs.djangoproject.com/en/stable/ref/migration-operations/#django.db.migrations.operations.RunPython]
expects two functions with specific parameters. Our first function
creates a new user.

def add_user(apps, schema_editor):
 User = apps.get_model(*settings.AUTH_USER_MODEL.split("."))
 User.objects.create(
 email="migrated@jambonsw.com",
 password=make_password("s3cr3tp4ssw0rd!"),
 short_name="Migrated",
 full_name="Migrated Improved User",
)

NB: Due to the lack of
UserManager or
User methods, the email field
is not validated or normalized. What’s more, the password field
is not validated against the project’s password validators. It is up
to the developer coding the migration file to provide proper values.

The second function is technically optional, but providing one makes our
lives easier and is considered best-practice. This function undoes the
first, and deletes the user we created.

def remove_user(apps, schema_editor):
 User = apps.get_model(*settings.AUTH_USER_MODEL.split("."))
 User.objects.get(email="migrated@jambonsw.com").delete()

Finally, we use our migration functions via
RunPython [http://docs.djangoproject.com/en/stable/ref/migration-operations/#django.db.migrations.operations.RunPython] in a
django.db.migrations.Migration subclass. Please note the addition
of the dependency below. If your file already had a dependency, please
add the tuple below, but do not remove the existing tuple(s).

class Migration(migrations.Migration):

 dependencies = [
 ("improved_user", "0001_initial"),
]

 operations = [
 migrations.RunPython(add_user, remove_user),
]

The final migration file is printed in totality below.

 1from django.conf import settings
 2from django.contrib.auth.hashers import make_password
 3from django.db import migrations
 4
 5
 6def add_user(apps, schema_editor):
 7 User = apps.get_model(*settings.AUTH_USER_MODEL.split("."))
 8 User.objects.create(
 9 email="migrated@jambonsw.com",
10 password=make_password("s3cr3tp4ssw0rd!"),
11 short_name="Migrated",
12 full_name="Migrated Improved User",
13)
14
15
16def remove_user(apps, schema_editor):
17 User = apps.get_model(*settings.AUTH_USER_MODEL.split("."))
18 User.objects.get(email="migrated@jambonsw.com").delete()
19
20
21class Migration(migrations.Migration):
22
23 dependencies = [
24 ("improved_user", "0001_initial"),
25]
26
27 operations = [
28 migrations.RunPython(add_user, remove_user),
29]

You may wish to read more about Django Data Migrations [http://docs.djangoproject.com/en/stable/topics/migrations/#data-migrations] and
RunPython [http://docs.djangoproject.com/en/stable/ref/migration-operations/#django.db.migrations.operations.RunPython].

 How To: Use the Django Admin with Improved User

How To: Use the Django Admin with Improved User

Django Improved User defines an admin panel for the
User model provided by the package.

The admin panel is used automatically if you are integrating directly
with the package (see Select a Configuration Method for Improved User for more
information about different uses, and How To: Integrate Improved User Directly for
instructions on direct integration).

If you are extending the User model with no changes (as shown in the
Quickstart: Using Improved User), you can simply import the existing admin panel and
use it in your own project.

"""Demonstrate use of UserAdmin on extended User model"""
from django.contrib import admin
from django.contrib.auth import get_user_model

from improved_user.admin import UserAdmin

User = get_user_model() # pylint: disable=invalid-name
WARNING
This works, but note that any additional fields do not appear in the
Admin. For instance, the User model in this example has a verified
boolean field added to it, but this field will not appear in the
admin. Additionally, if the verified field did not have a default,
creating the User model via the admin panel would be impossible. As
such, do not use this method in production applications, and instead
define your own UserAdmin class.
admin.site.register(User, UserAdmin)

As noted in the comment in the file above, this method is not desirable
in production contexts. Additionally, it will not work in the event you
are replacing existing fields (as shown in
How To: Create a Custom User using Mixins).

When using the extension method on a real/production site, or when
replacing existing fields, you will need to build your own admin panel.
Django doesn’t supply mechanisms for simple inheritance of other admin
panels, and the package maintainers don’t know what fields you’re using,
so it’s impossible for us to provide an easily extendable or re-usable
admin panel in these scenarios. We encourage you to look at
UserAdmin for guidance (printed below
for your convenience).

"""Admin Configuration for Improved User"""
from django.contrib.auth.admin import UserAdmin as BaseUserAdmin
from django.utils.translation import gettext_lazy as _

from .forms import UserChangeForm, UserCreationForm

class UserAdmin(BaseUserAdmin):
 """Admin panel for Improved User, mimics Django's default"""

 fieldsets = (
 (None, {"fields": ("email", "password")}),
 (_("Personal info"), {"fields": ("full_name", "short_name")}),
 (
 _("Permissions"),
 {
 "fields": (
 "is_active",
 "is_staff",
 "is_superuser",
 "groups",
 "user_permissions",
),
 },
),
 (_("Important dates"), {"fields": ("last_login", "date_joined")}),
)
 add_fieldsets = (
 (
 None,
 {
 "classes": ("wide",),
 "fields": ("email", "short_name", "password1", "password2"),
 },
),
)
 form = UserChangeForm
 add_form = UserCreationForm
 list_display = ("email", "full_name", "short_name", "is_staff")
 search_fields = ("email", "full_name", "short_name")
 ordering = ("email",)

Note

To allow the class above to be imported in demo situations, the
module is lacking a call to register the UserAdmin class.
When you create your own class, you will need code similar to the
snippet below.

from django.contrib import admin
from django.contrib.auth import get_user_model

User = get_user_model()
admin.site.register(User, NewUserAdmin)

 How to Contribute

How to Contribute

First off, thanks for taking the time to contribute! ✨🎉

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given. The following is a
set of guidelines for contributing to django-improved-user, hosted on
Github [https://github.com/jambonsw/django-improved-user]. These are mostly guidelines, not rules. Use your best
judgment, and feel free to propose changes to this document in a pull
request.

Please remember that this is a volunteer-driven project. We will look at
the issues and pull requests as soon as possible.

	Code of Conduct

	Types of Contributions

	Report Bugs

	Fix Bugs

	Write (or Request) Documentation

	Your First Contribution

	Your First Code Contribution

	Your First Documentation Contribution

Code of Conduct

This project is subject to a Code of Conduct [https://github.com/jambonsw/django-improved-user/blob/development/CODE_OF_CONDUCT.md]. By participating, you
are expected to uphold this code.

Please be respectful to other developers.

Types of Contributions

You can contribute in many ways:

Report Bugs

Please report bugs on the Github issue tracker [https://github.com/jambonsw/django-improved-user/issues]. Search the tracker to
make sure someone else hasn’t already reported the issue. If you find
your the problem has already been reported, feel free to add more
information if appropriate. If you don’t find the problem reported,
please open a new issue, and follow the guidelines set forth in the text
field.

Fix Bugs

Look through the Github issue tracker [https://github.com/jambonsw/django-improved-user/issues] for bugs. Anything tagged with
“bug” and “help wanted” is open to whoever wants to implement it. If
someone has been assigned, or notes that it is claimed in the comments,
please reach out to them to work together on the issue to avoid
duplicating work. Note that, as volunteers, people sometime are unable
to complete work they start, and that it is reasonable after a certain
amount of time to assume they are no longer working on the issue. Use
your best judgment to assess the situation.

Write (or Request) Documentation

The documentation aims to provide reference material, how-to guides, and
a general tutorial for getting started with Django and
django-improved-user. If you believe the documentation can be expanded
or added to, your contribution would be welcomed.

If you are running into a problem, and believe that some documentation
could clarify the problem (or the solution!) please feel free to request
documentation on the Github issue tracker [https://github.com/jambonsw/django-improved-user/issues].

For more about different kinds of documentations and how to think about
the differences, please watch Daniele Procida’s PyCon US 2017 talk [https://www.youtube.com/watch?v=azf6yzuJt54] on
the subject.

Your First Contribution

Ready to contribute? Let’s get django-improved-user working on your
local machine.

This package relies on Python, pip, and Django. Please make sure you
have the first two installed.

To get started, fork the git repository to your own account using the
fork button on the top right of the Github interface. You now have your
own fork of the project! Clone your fork of the repository using the
command below, but with your own username.

$ git clone git@github.com:YOUR_USERNAME/django-improved-user.git

We recommend the use of virtual environments when developing
(generally). If you are not familiar with virtual environments, take a
look at Python’s venv documentation [https://docs.python.org/3/library/venv.html#module-venv]. Virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/] is also a
favorite.

You can now install all of the dependencies required to develop the
project. Use pip to install all dependencies, as demonstrated below.

$ pip install -r requirements.txt

If you are modifying code, keep reading. If you are changing
documentation, skip to the next section.

Your First Code Contribution

Before making any changes, let’s first make sure all the tests pass. To
run the test suite on a single version of Django, you will need to
install Django and the package (in development mode). Use the command
below to do both.

$ python setup.py develop

Run the runtests.py script from the root of the project to test the
django-improved-user project.

$ python runtests.py

You can limit the tests or pass paramaters as if you had called Django’s
manage.py test.

$./runtests.py tests.test_basic -v 3

If you have Python 3.7, 3.8, 3.9 and 3.10 installed on your system, you
will be able to test the package under all required conditions. The
project uses tox to make this easy. This will use all the linters and
test the package with multiple Python and Django versions.

$ tox

Note that any change made to this project must meet the linting rules
and tests run by tox. These rules are double-checked by TravisCI and
AppVeyor. Furthermore, changes in code must maintain or increase
code-coverage unless this is unreasonable.

If your tests all pass, you are ready to make changes! If not, please
open an issue in Github detailing the test failure you are seeing.

Create a new branch in the repository. Name the branch descriptively,
and reference the the github issue if applicable. Below are a few
examples of what that command might look like.

$ git checkout -b add_how_to_subclass_abstract_user_guide
$ git checkout -b issue_45_allow_whitespace_in_passwords

Please note that all pull requests that feature code changes are
expected to reference github issues, as discussion is required for any
change.

Make your changes! We recommend a test-driven approach to development.
Please remember to update any relevant documentation. Make your commits
small, and target each commit to do a single thing. If you are
comfortable rebasing git commits, please do so at the end - providing
small, targeted, organized commits can make reviewing code radically
easier, and we will be grateful for it.

Once you are done, push your changes to github, and open a pull request
via the interface. Please follow all of the instructions in the pull
request textfield when doing so, as it will help us understand and
review your code.

Congratulations on opening a pull request! 🎉

Your First Documentation Contribution

If it isn’t documented, it doesn’t exist.

—Mike Pope [http://www.mikepope.com/blog/DisplayBlog.aspx?permalink=1680]

Documentation is crucial, and I am thrilled to get your help writing it!

All of the documentation is written in reStructuredText [http://docutils.sourceforge.net/rst.html], sometimes
called rst. Some of the documents (such as this one!) are in the root
of the Github [https://github.com/jambonsw/django-improved-user] project, but the vast majority exist in the docs
directory. The documents found in this directory are compiled to HTML by
Sphinx [http://www.sphinx-doc.org/] (which has a primer on rst [http://www.sphinx-doc.org/en/stable/rest.html#rst-primer]).

You may use the Makefile in the docs directory to run Sphinx.

$ cd docs
$ make clean && make html

If you browse to _build/html (within the docs directory), you’ll
find a local build of all the documentation! Open any of the HTML files
in a browser to read the documentation.

Alternatively, you can use tox to build the documentation (requires
that Python 3.6 be installed). This is more of a check, as navigating to
the built files is less easy.

$ tox -e docs

The documentation automatically builds reference documentation for the
project. To update these reference documents, you will need to change
the Python docstrings in the code itself. Corrections and expansions to
existing docs, as well as new tutorials and how-to guides are welcome
additions. If you had a pain point while using this project, and you
would like to add to an existing document or else to write a new one,
you are encouraged to do it!

If you run into an problems or have a question, please ask it on the
Github issue tracker [https://github.com/jambonsw/django-improved-user/issues] (after making sure someone hasn’t already asked
and answered the question!).

Once you have made changes to the documents in question, you’ll want to
make sure that Sphinx builds the documentation without any errors.

Commit your changes, and push them to your local branch. Using the
Github interface, open a pull request to the development branch in the
main repository! Please follow all of the instructions in the pull
request textfield when doing so, as it will help us understand and
review your code.

Congratulations on opening a pull request! 🎉

 Package Reference

Package Reference

In this Document

	Overview

	Reference Documents

Overview

Django Improved User is organized like a regular Django app.

	
class improved_user.apps.ImprovedUserConfig

	Reference this class in INSTALLED_APPS to use the package.

The package provides both a concerete
User model, as well as mix-in and
abstract model classes to be used to extend the model or replace it
entirely. Please refer to Select a Configuration Method for Improved User for more
information about how to configure these models to best suit your
purposes.

The package also provides forms, test factories, and an admin panel. Please
see the reference documentation for these items below.

Finally, the actual code on Github [https://github.com/jambonsw/django-improved-user] has three example projects that may
be helpful if this documentation was not.

Reference Documents

	Improved User Model

	Managers

	Mix-in Model Classes
	AbstractUser

	DjangoIntegrationMixin

	EmailAuthMixin

	FullNameMixin

	ShortNameMixin

	Forms
	UserCreationForm

	UserChangeForm

	AbstractUserCreationForm

	AbstractUserChangeForm

	Test Factories

	Django Admin Panel

 Improved User Model

Improved User Model

	
class improved_user.models.User(email, password, short_name=None, full_name=None)

	Bases: improved_user.model_mixins.AbstractUser

The Improved User Model is intended to be used out-of-the-box.

Do not import this model directly: use
get_user_model() [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.get_user_model].

	Parameters

	
	id (AutoField) – Id

	date_joined (DateTimeField) – Date joined

	email (EmailField) – Email address

	full_name (CharField) – Full name

	groups (ManyToManyField) – The groups this user belongs to. A user will get all permissions granted to each of their groups.

	is_active (BooleanField) – Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

	is_staff (BooleanField) – Designates whether the user can log into the admin site.

	is_superuser (BooleanField) – Designates that this user has all permissions without explicitly assigning them.

	last_login (DateTimeField) – Last login

	password (CharField) – Password

	short_name (CharField) – Short name

	user_permissions (ManyToManyField) – Specific permissions for this user.

	
check_password(raw_password)

	Return a boolean of whether the raw_password was correct. Handles
hashing formats behind the scenes.

	
clean()

	Override default clean method to normalize email.

Call super().clean() if overriding.

	
email_user(subject, message, from_email=None, **kwargs)

	Send an email to this User.

	
get_full_name()

	Return the full name of the user.

	
get_short_name()

	Return the short name for the user.

	
get_username()

	Return the username for this User.

	
has_module_perms(app_label)

	Return True if the user has any permissions in the given app label.
Use similar logic as has_perm(), above.

	
has_perm(perm, obj=None)

	Return True if the user has the specified permission. Query all
available auth backends, but return immediately if any backend returns
True. Thus, a user who has permission from a single auth backend is
assumed to have permission in general. If an object is provided, check
permissions for that object.

	
has_perms(perm_list, obj=None)

	Return True if the user has each of the specified permissions. If
object is passed, check if the user has all required perms for it.

	
property is_anonymous

	Always return False. This is a way of comparing User objects to
anonymous users.

	
property is_authenticated

	Always return True. This is a way to tell if the user has been
authenticated in templates.

	
refresh_from_db(using=None, fields=None)

	Reload field values from the database.

By default, the reloading happens from the database this instance was
loaded from, or by the read router if this instance wasn’t loaded from
any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields
should be an iterable of field attnames. If fields is None, then
all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading
of the field will call this method.

 Managers

Managers

	
class improved_user.managers.UserManager(*args, **kwargs)

	Manager for Users; overrides create commands for new fields

Meant to be interacted with via the user model.

User.objects # the UserManager
User.objects.all() # has normal Manager/UserManager methods
User.objects.create_user # overrides methods for Improved User

Set to objects [http://docs.djangoproject.com/en/stable/ref/models/class/#django.db.models.Model.objects] by
AbstractUser

	
create_superuser(email, password, **extra_fields)

	Save new User with is_staff and is_superuser set to True

	
create_user(email=None, password=None, **extra_fields)

	Save new User with email and password

 Mix-in Model Classes

Mix-in Model Classes

These classes are provided as tools to help build your own User models.

	AbstractUser

	DjangoIntegrationMixin

	EmailAuthMixin

	FullNameMixin

	ShortNameMixin

AbstractUser

	
class improved_user.model_mixins.AbstractUser(*args, **kwargs)

	Bases: improved_user.model_mixins.DjangoIntegrationMixin, improved_user.model_mixins.FullNameMixin, improved_user.model_mixins.ShortNameMixin, improved_user.model_mixins.EmailAuthMixin, django.contrib.auth.models.PermissionsMixin [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.PermissionsMixin], django.contrib.auth.base_user.AbstractBaseUser

Abstract User base class to be inherited.

Do not instantiate this class directly. The class provides a fully
featured User model with admin-compliant permissions. Differs from
Django’s AbstractUser [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractUser]:

	Login occurs with an email and password instead of username.

	Provides short_name and full_name instead of first_name and
last_name.

All fields other than email and password are optional.

Sets objects [http://docs.djangoproject.com/en/stable/ref/models/class/#django.db.models.Model.objects] to
UserManager.

Documentation about Django’s
AbstractBaseUser [http://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser] may be helpful
in understanding this class.

	Parameters

	
	date_joined (DateTimeField) – Date joined

	email (EmailField) – Email address

	full_name (CharField) – Full name

	groups (ManyToManyField) – The groups this user belongs to. A user will get all permissions granted to each of their groups.

	is_active (BooleanField) – Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

	is_staff (BooleanField) – Designates whether the user can log into the admin site.

	is_superuser (BooleanField) – Designates that this user has all permissions without explicitly assigning them.

	last_login (DateTimeField) – Last login

	password (CharField) – Password

	short_name (CharField) – Short name

	user_permissions (ManyToManyField) – Specific permissions for this user.

	
check_password(raw_password)

	Return a boolean of whether the raw_password was correct. Handles
hashing formats behind the scenes.

	
clean()

	Override default clean method to normalize email.

Call super().clean() if overriding.

	
clean_fields(exclude=None)

	Clean all fields and raise a ValidationError containing a dict
of all validation errors if any occur.

	
email_user(subject, message, from_email=None, **kwargs)

	Send an email to this User.

	
full_clean(exclude=None, validate_unique=True)

	Call clean_fields(), clean(), and validate_unique() on the model.
Raise a ValidationError for any errors that occur.

	
get_deferred_fields()

	Return a set containing names of deferred fields for this instance.

	
get_full_name()

	Return the full name of the user.

	
get_group_permissions(obj=None)

	Return a list of permission strings that this user has through their
groups. Query all available auth backends. If an object is passed in,
return only permissions matching this object.

	
get_session_auth_hash()

	Return an HMAC of the password field.

	
get_short_name()

	Return the short name for the user.

	
get_user_permissions(obj=None)

	Return a list of permission strings that this user has directly.
Query all available auth backends. If an object is passed in,
return only permissions matching this object.

	
get_username()

	Return the username for this User.

	
has_module_perms(app_label)

	Return True if the user has any permissions in the given app label.
Use similar logic as has_perm(), above.

	
has_perm(perm, obj=None)

	Return True if the user has the specified permission. Query all
available auth backends, but return immediately if any backend returns
True. Thus, a user who has permission from a single auth backend is
assumed to have permission in general. If an object is provided, check
permissions for that object.

	
has_perms(perm_list, obj=None)

	Return True if the user has each of the specified permissions. If
object is passed, check if the user has all required perms for it.

	
has_usable_password()

	Return False if set_unusable_password() has been called for this user.

	
property is_anonymous

	Always return False. This is a way of comparing User objects to
anonymous users.

	
property is_authenticated

	Always return True. This is a way to tell if the user has been
authenticated in templates.

	
refresh_from_db(using=None, fields=None)

	Reload field values from the database.

By default, the reloading happens from the database this instance was
loaded from, or by the read router if this instance wasn’t loaded from
any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields
should be an iterable of field attnames. If fields is None, then
all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading
of the field will call this method.

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
save_base(raw=False, force_insert=False, force_update=False, using=None, update_fields=None)

	Handle the parts of saving which should be done only once per save,
yet need to be done in raw saves, too. This includes some sanity
checks and signal sending.

The ‘raw’ argument is telling save_base not to save any parent
models and not to do any changes to the values before save. This
is used by fixture loading.

	
serializable_value(field_name)

	Return the value of the field name for this instance. If the field is
a foreign key, return the id value instead of the object. If there’s
no Field object with this name on the model, return the model
attribute’s value.

Used to serialize a field’s value (in the serializer, or form output,
for example). Normally, you would just access the attribute directly
and not use this method.

	
validate_unique(exclude=None)

	Check unique constraints on the model and raise ValidationError if any
failed.

DjangoIntegrationMixin

	
class improved_user.model_mixins.DjangoIntegrationMixin(*args, **kwargs)

	Mixin provides fields for Django integration to work correctly

Provides permissions for Django Admin integration, as well as date
field used by authentication code.

	Parameters

	
	date_joined (DateTimeField) – Date joined

	is_active (BooleanField) – Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

	is_staff (BooleanField) – Designates whether the user can log into the admin site.

EmailAuthMixin

	
class improved_user.model_mixins.EmailAuthMixin(*args, **kwargs)

	A mixin to use email as the username

	Parameters

	email (EmailField) – Email address

	
clean()

	Override default clean method to normalize email.

Call super().clean() if overriding.

	
email_user(subject, message, from_email=None, **kwargs)

	Send an email to this User.

FullNameMixin

	
class improved_user.model_mixins.FullNameMixin(*args, **kwargs)

	A mixin to provide an optional full name field

	Parameters

	full_name (CharField) – Full name

	
get_full_name()

	Return the full name of the user.

ShortNameMixin

	
class improved_user.model_mixins.ShortNameMixin(*args, **kwargs)

	A mixin to provide an optional short name field

	Parameters

	short_name (CharField) – Short name

	
get_short_name()

	Return the short name for the user.

 Forms

Forms

Abstract forms meant to be inherited or concrete forms meant to be
used direction in your views.

Note

These forms are unnecessary starting in Django 2.1, as Django now
supports custom user models in its own forms.

	UserCreationForm

	UserChangeForm

	AbstractUserCreationForm

	AbstractUserChangeForm

UserCreationForm

	
class improved_user.forms.UserCreationForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	Bases: improved_user.forms.AbstractUserCreationForm

Form to create an unprivileged user

A concrete implementation of AbstractUserCreationForm that uses an
e-mail address as a user’s identifier.

	Parameters

	
	email (EmailField) – Email address

	full_name (CharField) – Full name

	short_name (CharField) – Short name

	password1 (CharField) – Password

	password2 (CharField) – Enter the same password as above, for verification.

	
clean_email()

	Clean email; set nice error message

Since User.email is unique, this check is redundant,
but it sets a nicer error message than the ORM. See #13147.

https://code.djangoproject.com/ticket/13147

	
property media

	Return all media required to render the widgets on this form.

UserChangeForm

	
class improved_user.forms.UserChangeForm(*args, **kwargs)

	Bases: improved_user.forms.AbstractUserChangeForm

Form to update user, but not their password

	Parameters

	
	password (ReadOnlyPasswordHashField) – Raw passwords are not stored, so there is no way to see this user’s password, but you can change the password using this form.

	last_login (DateTimeField) – Last login

	is_superuser (BooleanField) – Designates that this user has all permissions without explicitly assigning them.

	groups (ModelMultipleChoiceField) – The groups this user belongs to. A user will get all permissions granted to each of their groups.

	user_permissions (ModelMultipleChoiceField) – Specific permissions for this user.

	is_staff (BooleanField) – Designates whether the user can log into the admin site.

	is_active (BooleanField) – Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

	date_joined (DateTimeField) – Date joined

	full_name (CharField) – Full name

	short_name (CharField) – Short name

	email (EmailField) – Email address

	
property media

	Return all media required to render the widgets on this form.

AbstractUserCreationForm

	
class improved_user.forms.AbstractUserCreationForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	Bases: django.forms.models.ModelForm

Abstract Form to create an unprivileged user

Create a User with no permissions based on username and password.

	Parameters

	
	password1 (CharField) – Password

	password2 (CharField) – Enter the same password as above, for verification.

	
_post_clean()

	Run password validaton after clean methods

When clean methods are run, the user instance does not yet
exist. To properly compare model values agains the password (in
the UserAttributeSimilarityValidator), we wait until we have an
instance to compare against.

https://code.djangoproject.com/ticket/28127
https://github.com/django/django/pull/8408

Has no effect in Django prior to 1.9
May become unnecessary in Django 2.0 (if this superclass changes)

	
clean_password2()

	Check wether password 1 and password 2 are equivalent

While ideally this would be done in clean, there is a chance a
superclass could declare clean and forget to call super. We
therefore opt to run this password mismatch check in password2
clean, but to show the error above password1 (as we are unsure
whether password 1 or password 2 contains the typo, and putting
it above password 2 may lead some users to believe the typo is
in just one).

	
property media

	Return all media required to render the widgets on this form.

	
save(commit=True)

	Save the user; use password hasher to set password

AbstractUserChangeForm

	
class improved_user.forms.AbstractUserChangeForm(*args, **kwargs)

	Bases: django.forms.models.ModelForm

Base form update User, but not their password

	Parameters

	password (ReadOnlyPasswordHashField) – Raw passwords are not stored, so there is no way to see this user’s password, but you can change the password using this form.

	
clean_password()

	Change user info; not the password

We seek to change the user, but not the password.
Regardless of what the user provides, return the initial value.
This is done here, rather than on the field, because the
field does not have access to the initial value

	
get_local_password_path()

	Return relative path to password form

Will return rel_password_url attribute on form
or else ‘../password/’. If subclasses cannot simply replace
rel_password_url, then they can override this method instead of
__init__.

	
property media

	Return all media required to render the widgets on this form.

 Test Factories

Test Factories

Factories to make testing with Improved User easier

	
class improved_user.factories.UserFactory(**kwargs)

	Bases: factory.django.DjangoModelFactory

Factory Boy factory for Improved User

Generates a user with a default password of password!.
The user is active, but is not staff or a superuser.
Any value can be overridden by passing in a value, as shown below.

UserFactory(
 password='mys3cr3tp4ssw0rd!',
 is_superuser=True,
)

 Django Admin Panel

Django Admin Panel

Admin Configuration for Improved User

	
class improved_user.admin.UserAdmin(model, admin_site)

	Admin panel for Improved User, mimics Django’s default

	
add_form

	alias of improved_user.forms.UserCreationForm

	
form

	alias of improved_user.forms.UserChangeForm

 History

History

Next Release

	Nothing Yet!

2.0.0 (Forthcoming)

	
	Support:
	
	Python 3.6, 3.7, 3.8, 3.9

	Django 2.2, 3.1, 3.2, 4.0

	
	Drop support for:
	
	Python 3.4, 3.5

	Django 1.8, 1.11, 2.0, 2.1

	Update: ugettext_lazy() → gettext_lazy() (#118 [https://github.com/jambonsw/django-improved-user/issues/118], #117 [https://github.com/jambonsw/django-improved-user/pull/117])

	
	Upgrade development/maintenance experience
	
	Run tests via Github Actions (instead of TravisCI)

	Upgrade development & documentation dependencies

	Use flit to build/release sdist instead of setup.py

1.0.1 (2020-02-16)

	Add flexibility to admin panel usage; document usage

1.0.0 (2018-07-28)

	Django 1.8, 1.11, 2.0, 2.1 officially supported.

	Django 1.9 and 1.10 are not tested against, as Django does not support
them, but they likely work.

	Breaking change: Model mix-in classes now exist in their own
module! Import from model_mixins instead of models. (#46 [https://github.com/jambonsw/django-improved-user/pull/46],
#96 [https://github.com/jambonsw/django-improved-user/pull/96])

	Fix issue #49 [https://github.com/jambonsw/django-improved-user/issues/49]: allow form classes to be imported without requiring
project to be in INSTALLED_APPS (See #36 [https://github.com/jambonsw/django-improved-user/issues/36] and #46 [https://github.com/jambonsw/django-improved-user/pull/46] below for
associated error and reasoning) (#50 [https://github.com/jambonsw/django-improved-user/pull/50])

	Fix issue #36 [https://github.com/jambonsw/django-improved-user/issues/36]: refactor package to allow for mix-in classes to be
imported into third-party project without requiring project to be in
INSTALLED_APPS (which would unnecessarily create unused tables in
the project). Add documentation/tutorial on subject. (#46 [https://github.com/jambonsw/django-improved-user/pull/46])

	Django 2.0, 2.1 compatibility. (#43 [https://github.com/jambonsw/django-improved-user/pull/43], #93 [https://github.com/jambonsw/django-improved-user/pull/93])

0.5.3 (2017-08-29)

	Include history of changes in online documentation. (#34 [https://github.com/jambonsw/django-improved-user/pull/34])

	Write documentation about why and how the project was built. (#34 [https://github.com/jambonsw/django-improved-user/pull/34])

	Add section about contributing documentation. (#34 [https://github.com/jambonsw/django-improved-user/pull/34])

0.5.2 (2017-08-27)

	Change package PyPI [https://pypi.org/project/django-improved-user/] license identifier for better information on
djangopackages.org detail page [https://djangopackages.org/packages/p/django-improved-user/]. See
djangopackages/djangopackages#483 [https://github.com/djangopackages/djangopackages/issues/483] for more information.

0.5.1 (2017-08-27)

	Docfix: Remove links to ReadTheDocs Stable version from ReadMe, as we
are unable to build that version until v1.0.0 release. See
rtfd/readthedocs.org#2032 [https://github.com/rtfd/readthedocs.org/issues/2032] for more information. (#31 [https://github.com/jambonsw/django-improved-user/pull/31])

0.5.0 (2017-08-26)

	Provide documentation for the package. This includes Sphinx
documentation hosted on ReadTheDocs.org, (#26 [https://github.com/jambonsw/django-improved-user/pull/26], #29 [https://github.com/jambonsw/django-improved-user/pull/29]), but also
documents to help contribute to github more easily (#26 [https://github.com/jambonsw/django-improved-user/pull/26]) as well as
a code of conduct (#26 [https://github.com/jambonsw/django-improved-user/pull/26]). The Read Me includes badges (#26 [https://github.com/jambonsw/django-improved-user/pull/26]).

	In the event the documentation isn’t enough, the project now includes
an example project demonstrating integration of django-improved-user
with Django as well as django-registration. (#28 [https://github.com/jambonsw/django-improved-user/pull/28]) This content is
used to create some of the documentation (#29 [https://github.com/jambonsw/django-improved-user/pull/29]).

	Bugfix: The UserManager was setting the last_login attribute
of new users at creation time. Reported in #25 [https://github.com/jambonsw/django-improved-user/issues/25], fixed in #27 [https://github.com/jambonsw/django-improved-user/pull/27]
(last_login is None until the user actually logs in).

0.4.0 (2017-08-14)

Warning: This is a breaking change, and migrations will conflict
with v0.3.0 due to PR #23 [https://github.com/jambonsw/django-improved-user/pull/23]

	Add UserFactory to make testing easier for developers using the
package; requires factory-boy (PR #20 [https://github.com/jambonsw/django-improved-user/pull/20])

	Split the ImprovedIdentityMixin class into atomic parts:
DjangoIntegrationMixin, FullNameMixin, ShortNameMixin,
EmailAuthMixin. This allows developers to create their own custom
AbstractUsers if needed. (PR #22 [https://github.com/jambonsw/django-improved-user/pull/22])

	Change blank to True on short_name field of User model.
(Breaking change! PR #23 [https://github.com/jambonsw/django-improved-user/pull/23]).

0.3.0 (2017-08-10)

	Integrate coverage and codecov service (PR #16 [https://github.com/jambonsw/django-improved-user/pull/16])

	Make TravisCI test builds public (first seen in PR #16 [https://github.com/jambonsw/django-improved-user/pull/16])

	Merge appropriate tests from Django master (1.11.3 is current release
at time of writing). This increases test coverage across the board and
updates the test suite to check for parity between Django’s User API
and Improved User’s API as well as check for the same security issues.
(PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	UserManager raises a friendly error if the developer tries to pass a
username argument (PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Password errors are shown above both password fields
(PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Bugfix: UserManager handles is_staff, is_active, and is_superuser
correctly (PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Bugfix: User has email normalized during Model.clean phase (PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Bugfix: UserAdmin requires short_name in both add and change
(previously only in change; PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Bugfix: UserAdmin uses correct relative path URL for password change
in all versions of Django (was not working in Django 1.9+) (PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

	Bugfix: Runtests correctly handles test specification (PR #18 [https://github.com/jambonsw/django-improved-user/pull/18])

0.2.0 (2017-07-30)

	Reorganize project to follow best practices (PR #9 [https://github.com/jambonsw/django-improved-user/pull/9])

	Allow setup.py to run tests by overriding test command (PR #9 [https://github.com/jambonsw/django-improved-user/pull/9])

	Test locally with Tox (PR #10 [https://github.com/jambonsw/django-improved-user/pull/10])

	Remove Django 1.9 from supported versions (PR #10 [https://github.com/jambonsw/django-improved-user/pull/10])

	Enforce styleguide with flake8, isort, and pylint.
Use flake8-commas and flake8-quotes to enhance flake8.
Override default distutils check command to check package metadata.
Use check-manifest to check contents of MANIFEST.in (PR #11 [https://github.com/jambonsw/django-improved-user/pull/11])

	Integrate https://pyup.io/ into project (PR #12 [https://github.com/jambonsw/django-improved-user/pull/12])

	Upgrade flake8 to version 3.4.1 (PR #13 [https://github.com/jambonsw/django-improved-user/pull/13])

	Make release and distribution less painful with
bumpversion package and a Makefile (PR #15 [https://github.com/jambonsw/django-improved-user/pull/15])

	Add HISTORY.rst file to provide change log (PR #15 [https://github.com/jambonsw/django-improved-user/pull/15])

0.1.1 (2017-06-28)

	Fix metadata in setup.py for warehouse
(see https://github.com/pypa/warehouse/issues/2155 and PR #8 [https://github.com/jambonsw/django-improved-user/pull/8])

0.1.0 (2017-06-28)

	Add tests for Django 1.11 (PR #5 [https://github.com/jambonsw/django-improved-user/pull/5])

	Allow for integration with UserAttributeSimilarityValidator
(see https://code.djangoproject.com/ticket/28127,
https://github.com/django/django/pull/8408, and PR #5 [https://github.com/jambonsw/django-improved-user/pull/5])

	Rename project django-improved-user (from django-simple-user)

	Make development default branch (PR #6 [https://github.com/jambonsw/django-improved-user/pull/6])

	Initial public release (PR #7 [https://github.com/jambonsw/django-improved-user/pull/7])

	Use Simplified BSD License instead of Revised BSD License (#7 [https://github.com/jambonsw/django-improved-user/pull/7])

0.0.1 (2016-10-26)

	Simplified User model for better international handling.
Includes forms and admin configuration (PR #1 [https://github.com/jambonsw/django-improved-user/pull/1])

	All tests run on TravisCI (PR #3 [https://github.com/jambonsw/django-improved-user/pull/3])

	
	Compatible with:
	
	Python 3.4, 3.5, 3.6

	Django 1.8 through 1.10 (PR #3 [https://github.com/jambonsw/django-improved-user/pull/3] and #4 [https://github.com/jambonsw/django-improved-user/pull/4])

 Python Module Index

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 improved_user	

 	
 	
 improved_user.admin	

 	
 	
 improved_user.apps	

 	
 	
 improved_user.factories	

 	
 	
 improved_user.forms	

 	
 	
 improved_user.managers	

 	
 	
 improved_user.model_mixins	

 	
 	
 improved_user.models	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | R
 | S
 | U
 | V

_

 	
 	_post_clean() (improved_user.forms.AbstractUserCreationForm method)

A

 	
 	AbstractUser (class in improved_user.model_mixins)

 	AbstractUserChangeForm (class in improved_user.forms)

 	
 	AbstractUserCreationForm (class in improved_user.forms)

 	add_form (improved_user.admin.UserAdmin attribute)

C

 	
 	check_password() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

 	clean() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.model_mixins.EmailAuthMixin method)

 	(improved_user.models.User method)

 	
 	clean_email() (improved_user.forms.UserCreationForm method)

 	clean_fields() (improved_user.model_mixins.AbstractUser method)

 	clean_password() (improved_user.forms.AbstractUserChangeForm method)

 	clean_password2() (improved_user.forms.AbstractUserCreationForm method)

 	create_superuser() (improved_user.managers.UserManager method)

 	create_user() (improved_user.managers.UserManager method)

D

 	
 	DjangoIntegrationMixin (class in improved_user.model_mixins)

E

 	
 	email_user() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.model_mixins.EmailAuthMixin method)

 	(improved_user.models.User method)

 	
 	EmailAuthMixin (class in improved_user.model_mixins)

F

 	
 	form (improved_user.admin.UserAdmin attribute)

 	
 	full_clean() (improved_user.model_mixins.AbstractUser method)

 	FullNameMixin (class in improved_user.model_mixins)

G

 	
 	get_deferred_fields() (improved_user.model_mixins.AbstractUser method)

 	get_full_name() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.model_mixins.FullNameMixin method)

 	(improved_user.models.User method)

 	get_group_permissions() (improved_user.model_mixins.AbstractUser method)

 	get_local_password_path() (improved_user.forms.AbstractUserChangeForm method)

 	
 	get_session_auth_hash() (improved_user.model_mixins.AbstractUser method)

 	get_short_name() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.model_mixins.ShortNameMixin method)

 	(improved_user.models.User method)

 	get_user_permissions() (improved_user.model_mixins.AbstractUser method)

 	get_username() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

H

 	
 	has_module_perms() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

 	has_perm() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

 	
 	has_perms() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

 	has_usable_password() (improved_user.model_mixins.AbstractUser method)

I

 	
 	
 improved_user.admin

 	module

 	
 improved_user.apps

 	module

 	improved_user.apps.ImprovedUserConfig (class in improved_user.apps)

 	
 improved_user.factories

 	module

 	
 improved_user.forms

 	module

 	
 	
 improved_user.managers

 	module

 	
 improved_user.model_mixins

 	module

 	
 improved_user.models

 	module

 	is_anonymous (improved_user.model_mixins.AbstractUser property)

 	(improved_user.models.User property)

 	is_authenticated (improved_user.model_mixins.AbstractUser property)

 	(improved_user.models.User property)

M

 	
 	media (improved_user.forms.AbstractUserChangeForm property)

 	(improved_user.forms.AbstractUserCreationForm property)

 	(improved_user.forms.UserChangeForm property)

 	(improved_user.forms.UserCreationForm property)

 	
 module

 	improved_user.admin

 	improved_user.apps

 	improved_user.factories

 	improved_user.forms

 	improved_user.managers

 	improved_user.model_mixins

 	improved_user.models

R

 	
 	refresh_from_db() (improved_user.model_mixins.AbstractUser method)

 	(improved_user.models.User method)

S

 	
 	save() (improved_user.forms.AbstractUserCreationForm method)

 	(improved_user.model_mixins.AbstractUser method)

 	
 	save_base() (improved_user.model_mixins.AbstractUser method)

 	serializable_value() (improved_user.model_mixins.AbstractUser method)

 	ShortNameMixin (class in improved_user.model_mixins)

U

 	
 	User (class in improved_user.models)

 	UserAdmin (class in improved_user.admin)

 	UserChangeForm (class in improved_user.forms)

 	
 	UserCreationForm (class in improved_user.forms)

 	UserFactory (class in improved_user.factories)

 	UserManager (class in improved_user.managers)

V

 	
 	validate_unique() (improved_user.model_mixins.AbstractUser method)

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Documentation for Django Improved User

 		
 Quickstart: Using Improved User

 		
 Installation

 		
 Configuration and Usage

 		
 Quickstart: Contributing

 		
 Project Rationale

 		
 Select a Configuration Method for Improved User

 		
 Extension Method

 		
 Integration Method

 		
 Replacement Method

 		
 Warning about Email Case-Sensitivity

 		
 How To: Integrate Improved User Directly

 		
 How To: Create a Custom User using Mixins

 		
 How To: Use Improved User in Data Migrations

 		
 How To: Use the Django Admin with Improved User

 		
 How to Contribute

 		
 Code of Conduct

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Write (or Request) Documentation

 		
 Your First Contribution

 		
 Your First Code Contribution

 		
 Your First Documentation Contribution

 		
 Package Reference

 		
 Overview

 		
 Reference Documents

 		
 Improved User Model

 		
 Managers

 		
 Mix-in Model Classes

 		
 Forms

 		
 Test Factories

 		
 Django Admin Panel

 		
 History

 		
 Next Release

 		
 2.0.0 (Forthcoming)

 		
 1.0.1 (2020-02-16)

 		
 1.0.0 (2018-07-28)

 		
 0.5.3 (2017-08-29)

 		
 0.5.2 (2017-08-27)

 		
 0.5.1 (2017-08-27)

 		
 0.5.0 (2017-08-26)

 		
 0.4.0 (2017-08-14)

 		
 0.3.0 (2017-08-10)

 		
 0.2.0 (2017-07-30)

 		
 0.1.1 (2017-06-28)

 		
 0.1.0 (2017-06-28)

 		
 0.0.1 (2016-10-26)
